Electrolyte induced synergistic construction of cathode electrolyte interphase and capture of reactive free radicals for safer high energy density lithium-ion battery

热失控 电解质 阴极 阳极 材料科学 电池(电) 法拉第效率 电化学 锂离子电池 化学工程 化学 电极 热力学 功率(物理) 物理 物理化学 工程类
作者
Mingmin Ding,Xuning Feng,Yong Peng,Jingjing Tong,Baorong Hou,Yalan Xing,Weifeng Zhang,Li Wang,Yu Wu,Jie Lv,Chunyan Luo,Dejun Xiong,Shichao Zhang,Minggao Ouyang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:87: 207-214 被引量:1
标识
DOI:10.1016/j.jechem.2023.07.045
摘要

As the energy density of battery increases rapidly, lithium-ion batteries (LIBs) are facing serious safety issue with thermal runaway, which largely limits the large-scale applications of high-energy-density LIBs. It is generally agreed that the chemical crosstalk between the cathode and anode leads to thermal runaway of LIBs. Herein, a multifunctional high safety electrolyte is designed with synergistic construction of cathode electrolyte interphase and capture of reactive free radicals to limit the intrinsic pathway of thermal runaway. The cathode electrolyte interphase not only resists the gas attack from the anode but suppresses the parasitic side reactions induced by electrolyte. And the function of free radical capture has the ability of reducing heat release from thermal runaway of battery. The dual strategy improves the intrinsic safety of battery prominently that the triggering temperature of thermal runaway is increased by 24.4 °C and the maximum temperature is reduced by 177.7 °C. Simultaneously, the thermal runaway propagation in module can be self-quenched. Moreover, the electrolyte design balances the trade-off of electrochemical and safety performance of high-energy batteries. The capacity retention of LiNi0.8Co0.1Mn0.1O2|graphite pouch cell has been significantly increased from 53.85% to 97.05% with higher coulombic efficiency of 99.94% at operating voltage extended up to 4.5 V for 200 cycles. Therefore, this work suggests a feasible strategy to mitigate the safety risk of high-energy-density LIBs without sacrificing electrochemical performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不困发布了新的文献求助20
1秒前
cherry bomb完成签到,获得积分10
1秒前
布摇碧莲完成签到,获得积分10
1秒前
maox1aoxin应助DICPGLF采纳,获得30
2秒前
2秒前
嫩嫩发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
APPIE777完成签到,获得积分10
5秒前
5秒前
sys549发布了新的文献求助10
6秒前
6秒前
、芾完成签到,获得积分10
6秒前
7秒前
7秒前
屁颠屁颠_狼完成签到 ,获得积分0
7秒前
TTTaT完成签到,获得积分10
7秒前
从容芮应助胡说八道采纳,获得30
8秒前
苏沐完成签到,获得积分10
8秒前
8秒前
MJT10086完成签到,获得积分10
8秒前
Bethune124完成签到 ,获得积分10
9秒前
幸福的山雁完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
12秒前
秋雪瑶应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
xnhz关注了科研通微信公众号
12秒前
xxs应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得30
12秒前
Ava应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422058
求助须知:如何正确求助?哪些是违规求助? 2111559
关于积分的说明 5345491
捐赠科研通 1839069
什么是DOI,文献DOI怎么找? 915501
版权声明 561201
科研通“疑难数据库(出版商)”最低求助积分说明 489590