Disease Topic Modeling of Users' Inquiry Texts: A Text Mining-Based PQDR-LDA Model for Analyzing the Online Medical Records

潜在Dirichlet分配 主题模型 困惑 计算机科学 疾病 感知 价值(数学) 数据科学 情报检索 万维网 机器学习 人工智能 医学 心理学 语言模型 病理 神经科学
作者
Liu Xin,Yanju Zhou,Zongrun Wang,Ajay Kumar,Baidyanath Biswas
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19
标识
DOI:10.1109/tem.2023.3307550
摘要

Disease information mining is one of the critical factors affecting users' perception of the disease and has attracted extensive attention from the information management community in recent years. If the mined disease information is incompatible with the disease information perceived by the user, it will eventually lead to the loss of users from the online medical consultation platform, degrading its operation and management. Using existing models to mine disease information leads to significant errors when users perceive the disease. Therefore, this research extends the latent Dirichlet allocation (LDA) and Twitter-LDA models to propose an intelligent topic model, PQDR-LDA. Compared with the Twitter-LDA model, the proposed model has a smaller perplexity value, stronger generalization ability, greater coherence value, lower correlation between topics, and stronger ability in extracting the disease information. It is found that the accuracy of disease diagnosis is very low, and the user's need for perceiving the disease will be reduced while using the traditional model to mine only the text of user questions on an online medical consultation platform. The accuracy of disease diagnosis does not decrease while only mining the doctor's reply text. Disease information that is more suitable for the consultation text can be obtained, which in fact cannot meet the user's real appeal for health, and reduces the users’ needs in perceiving the disease. These findings have important management implications for the platform's operation and decision-making. Besides, users will ask questions in more medical texts simultaneously, which makes things more complicated. Unique management insights are obtained based on the disease information mining of user consultation texts through multiple consultation texts and multiple doctor replies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
时兆娟发布了新的文献求助10
2秒前
zkai完成签到,获得积分10
2秒前
西米发布了新的文献求助10
2秒前
@_@完成签到,获得积分0
2秒前
东山发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
7秒前
8秒前
CodeCraft应助lilia采纳,获得30
8秒前
白玉元宵发布了新的文献求助10
8秒前
DYXX完成签到 ,获得积分10
9秒前
程破茧完成签到,获得积分10
9秒前
Res_M完成签到 ,获得积分10
10秒前
zsy发布了新的文献求助10
11秒前
qq应助彪壮的小五采纳,获得10
11秒前
yj发布了新的文献求助10
11秒前
航航完成签到,获得积分10
12秒前
12秒前
薯条一克发布了新的文献求助10
13秒前
13秒前
nilou完成签到,获得积分10
15秒前
15秒前
15秒前
rise完成签到 ,获得积分10
15秒前
善学以致用应助机智的誉采纳,获得10
17秒前
17秒前
Hello应助黄黄采纳,获得10
17秒前
天行马发布了新的文献求助10
18秒前
20秒前
Owen应助i羽翼深蓝i采纳,获得10
20秒前
zhy发布了新的文献求助10
20秒前
阿会完成签到,获得积分10
21秒前
狂飙的蛋发布了新的文献求助20
21秒前
科研通AI5应助佳jia采纳,获得10
22秒前
笨笨西牛完成签到 ,获得积分0
24秒前
25秒前
25秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848737
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568043
捐赠科研通 3112141
什么是DOI,文献DOI怎么找? 1715101
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647