A YOLO-NL object detector for real-time detection

计算机科学 目标检测 稳健性(进化) 人工智能 推论 探测器 残余物 升级 对象(语法) 深度学习 计算机视觉 过程(计算) 比例(比率) 模式识别(心理学) 机器学习 算法 电信 生物化学 化学 物理 量子力学 基因 操作系统
作者
Yan Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122256-122256 被引量:97
标识
DOI:10.1016/j.eswa.2023.122256
摘要

In recent years, YOLO object detection models have undergone significant advancement due to the success of novel deep convolutional networks. The success of these YOLO models is often attributed to their use of guidance techniques, such as expertly tailored deeper backbone and meticulously crafted detector head, which provides effective mechanisms to tradeoff between accuracy and efficiency. However, these sluggish-reasoning models are not capable of handling false detection and negative phenomena, facing challenges include improving the robustness of scaled objects detection against occlude and densely sophisticated scenarios. To address these limitations, we propose a novel object detector, You Only Look Once and None Left (YOLO-NL). Our model includes a novel global dynamic label assignment strategy, which allocates labels for specific anchors to maintain a balance between higher precision detection and finer localization. To enhance the detection capability of multi-scale objects in complex scenes, we separately upgrade CSPNet and PANet using the shortest-longest gradient strategy and self-attention mechanism. To meet the need for fast inference, we propose the Rep-CSPNet network using the reparameterization method to convert residual convolutions to ghost linear operations. Additionally, we accelerate the feature extraction process by deploying the serial SSPP structure. The proposed model is robust to scale objects against negative effectives such as dust, dense, ambiguous, and obstructed scenes. YOLO-NL achieved a mAP of 52.9% on the COCO 2017 test dataset, exhibiting a significant improvement of 2.64% compared to the baseline YOLOX. It is worth noting that YOLO-NL can perform high-accuracy and high-speed face mask detection in real-life scenarios. The YOLO-NL model was employed on self-built FMD and large open-source datasets, and the results show that it outperforms the other state-of-the-art methods, achieving 98.8% accuracy while maintaining 130 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风吹半夏完成签到,获得积分10
刚刚
刚刚
Ava应助wyg1994采纳,获得10
刚刚
Skuld发布了新的文献求助10
1秒前
小海豚发布了新的文献求助10
1秒前
1秒前
1秒前
李健的小迷弟应助zhq采纳,获得10
2秒前
玄辰发布了新的文献求助10
2秒前
2秒前
林登万发布了新的文献求助10
2秒前
2秒前
张靖发布了新的文献求助10
4秒前
谢巫完成签到,获得积分10
4秒前
快乐的菠萝完成签到,获得积分10
5秒前
6秒前
科研通AI6应助风吹半夏采纳,获得10
6秒前
6秒前
6秒前
Shmily完成签到,获得积分10
6秒前
梅天豪发布了新的文献求助30
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
CodeCraft应助ily.采纳,获得10
7秒前
8秒前
Sue完成签到,获得积分10
9秒前
希望天下0贩的0应助Nemo采纳,获得10
10秒前
JQKing发布了新的文献求助10
10秒前
周少发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
张靖完成签到,获得积分10
10秒前
柏柳发布了新的文献求助30
11秒前
12秒前
梅天豪完成签到,获得积分10
12秒前
12秒前
懒大王完成签到,获得积分10
13秒前
13秒前
爆米花应助咿呀喂采纳,获得10
13秒前
13秒前
Li关闭了Li文献求助
13秒前
CodeCraft应助墨墨采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921