Lattice regulation strategy for constructing high-rate performance Na0.44Mn0.895Ti0.1Mg0.005O2 sodium-ion batteries cathode materials

X射线光电子能谱 阴极 扫描电子显微镜 高分辨率透射电子显微镜 材料科学 透射电子显微镜 晶体结构 分析化学(期刊) 兴奋剂 晶格常数 离子 化学工程 结晶学 纳米技术 化学 衍射 复合材料 光电子学 光学 色谱法 物理化学 物理 有机化学 工程类
作者
Hua Zhonge,Jian Yuxuan,Jijie Wang,Lin Yuhua,Wenqing Zhou,Jiang Hongyuqi,Shen Yongqiang,Xianwen Wu,Yanhong Xiang
出处
期刊:Journal of Solid State Chemistry [Elsevier BV]
卷期号:329: 124415-124415 被引量:2
标识
DOI:10.1016/j.jssc.2023.124415
摘要

Na0.44MnO2 has received much interest as a potential cathode material for Sodium-ion batteries (SIBs) because of its unique tunnel structure and the ease of Na+ insertion/extraction. Therefore, the size and stability of the tunnel structure are critical factors in solving its low-rate performance and cycle stability. Herein, a lattice regulation strategy to enlarge the size in favor of Na+ insertion/extraction and to maintain the stability of the tunnel structure of Na0.44MnO2 by Ti and trace Mg co-doping is reported for the first time. Subsequently, the Na0.44Mn0.895Ti0.1Mg0.005O2 (NMO-TM) material is synthesized with Ti/Mg co-doping. The structure and phase composition of the as-synthesized samples are investigated through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results indicate that Ti/Mg has been effectively doped into the crystal structure of Na0.44MnO2 while it maintains the stability of the tunnel structure. The material was used as cathode materials of rechargeable sodium-ion batteries. As a result, at a 1 C rate, the NMO-TM sample exhibits a considerable capacity of 110 mAh g−1, with retention rates of up to 93.6 % after 200 cycles. Even at a higher cycle rate of 20 C, the NMO-TM sample maintains a specific capacity of 80.0 mAh g−1, with a retention rate of 67 % after 2000 cycles. This work provides a facile strategy for regulating the tunnel structure to get stable and high-rate performance of cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
淡定的香菱完成签到,获得积分10
4秒前
4秒前
shu发布了新的文献求助10
5秒前
7秒前
吴谷杂粮发布了新的文献求助10
7秒前
于听枫完成签到 ,获得积分10
9秒前
马大王发布了新的文献求助10
9秒前
弓雷雷完成签到,获得积分10
10秒前
dkxy完成签到,获得积分10
11秒前
CipherSage应助科研通管家采纳,获得10
12秒前
datang完成签到,获得积分10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得20
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
龙猫爱看书完成签到,获得积分10
14秒前
shu完成签到,获得积分10
14秒前
火焰向上完成签到,获得积分10
15秒前
蓝色水晶完成签到,获得积分10
15秒前
亭语完成签到 ,获得积分10
23秒前
27秒前
27秒前
人间草木完成签到,获得积分10
28秒前
小鱼完成签到,获得积分10
30秒前
樱桃小丸子完成签到 ,获得积分20
32秒前
John发布了新的文献求助10
32秒前
Gaotingting发布了新的文献求助10
33秒前
彬彬完成签到,获得积分10
35秒前
关关完成签到 ,获得积分10
35秒前
独特的谷雪完成签到,获得积分10
38秒前
chenxin完成签到,获得积分10
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852