Autism Spectrum Disorder detection framework for children based on federated learning integrated CNN-LSTM

自闭症谱系障碍 计算机科学 自闭症 机器学习 人工智能 模式识别(心理学) 发展心理学 心理学
作者
Abdullah Lakhan,Mazin Abed Mohammed,Karrar Hameed Abdulkareem,Hassen Hamouda,Saleh Alyahya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107539-107539 被引量:44
标识
DOI:10.1016/j.compbiomed.2023.107539
摘要

The incidence of Autism Spectrum Disorder (ASD) among children, attributed to genetics and environmental factors, has been increasing daily. ASD is a non-curable neurodevelopmental disorder that affects children's communication, behavior, social interaction, and learning skills. While machine learning has been employed for ASD detection in children, existing ASD frameworks offer limited services to monitor and improve the health of ASD patients. This paper presents a complex and efficient ASD framework with comprehensive services to enhance the results of existing ASD frameworks. Our proposed approach is the Federated Learning-enabled CNN-LSTM (FCNN-LSTM) scheme, designed for ASD detection in children using multimodal datasets. The ASD framework is built in a distributed computing environment where different ASD laboratories are connected to the central hospital. The FCNN-LSTM scheme enables local laboratories to train and validate different datasets, including Ages and Stages Questionnaires (ASQ), Facial Communication and Symbolic Behavior Scales (CSBS) Dataset, Parents Evaluate Developmental Status (PEDS), Modified Checklist for Autism in Toddlers (M-CHAT), and Screening Tool for Autism in Toddlers and Children (STAT) datasets, on different computing laboratories. To ensure the security of patient data, we have implemented a security mechanism based on advanced standard encryption (AES) within the federated learning environment. This mechanism allows all laboratories to offload and download data securely. We integrate all trained datasets into the aggregated nodes and make the final decision for ASD patients based on the decision process tree. Additionally, we have designed various Internet of Things (IoT) applications to improve the efficiency of ASD patients and achieve more optimal learning results. Simulation results demonstrate that our proposed framework achieves an ASD detection accuracy of approximately 99% compared to all existing ASD frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mississippiecho完成签到,获得积分10
1秒前
scdd完成签到 ,获得积分10
1秒前
Gakay发布了新的文献求助10
1秒前
汉库克完成签到,获得积分10
2秒前
bob完成签到,获得积分20
4秒前
充电宝应助欢喜的天空采纳,获得10
4秒前
诚心八宝粥完成签到,获得积分10
5秒前
彤酱完成签到 ,获得积分10
9秒前
大模型应助916采纳,获得10
9秒前
天真豪完成签到 ,获得积分10
10秒前
11秒前
12秒前
搞科研的静静完成签到,获得积分10
14秒前
归尘应助ellieou采纳,获得20
16秒前
xbb88发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
21秒前
xbb88完成签到,获得积分10
22秒前
22秒前
艾利克斯发布了新的文献求助10
23秒前
23秒前
23秒前
传奇3应助zz采纳,获得10
24秒前
曹能豪完成签到,获得积分10
24秒前
可耐的乐荷完成签到,获得积分10
31秒前
完美世界应助916采纳,获得10
31秒前
dennisysz发布了新的文献求助10
32秒前
35秒前
辞忧完成签到,获得积分10
35秒前
35秒前
liuzengzhang666完成签到,获得积分10
36秒前
安静一曲完成签到 ,获得积分10
38秒前
melody发布了新的文献求助10
38秒前
39秒前
40秒前
wlei发布了新的文献求助10
41秒前
有魅力的乐珍完成签到 ,获得积分10
45秒前
刘十六发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103