Ensemble Experiments to Optimize Interventions Along the Customer Journey: A Reinforcement Learning Approach

心理干预 强化学习 计算机科学 随机对照试验 随机试验 互补性(分子生物学) 机器学习 贝叶斯概率 人工智能 心理学 数学 医学 统计 外科 精神科 生物 遗传学
作者
Yicheng Song,Tianshu Sun
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (8): 5115-5130 被引量:12
标识
DOI:10.1287/mnsc.2023.4914
摘要

Firms adopt randomized experiments to evaluate various interventions (e.g., website design, creative content, and pricing). However, most randomized experiments are designed to identify the impact of one specific intervention. The literature on randomized experiments lacks a holistic approach to optimize a sequence of interventions along the customer journey. Specifically, locally optimal interventions unveiled by randomized experiments might be globally suboptimal when considering their interdependence as well as the long-term rewards. Fortunately, the accumulation of a large number of historical experiments creates exogenous interventions at different stages along the customer journey and provides a new opportunity. This study integrates multiple experiments within the reinforcement learning (RL) framework to tackle the questions that cannot be answered by stand-alone randomized experiments. How can we learn optimal policy with a sequence of interventions along the customer journey based on an ensemble of historical experiments? Additionally, how can we learn from multiple historical experiments to guide future intervention trials? We propose a Bayesian recurrent Q-network model that leverages the exogenous interventions from multiple experiments to learn their effectiveness at different stages of the customer journey and optimize them for long-term rewards. Beyond optimization within the existing interventions, the Bayesian model also estimates the distribution of rewards, which can guide subject allocation in the design of future experiments to optimally balance exploration and exploitation. In summary, the proposed model creates a two-way complementarity between RL and randomized experiments, and thus, it provides a holistic approach to learning and optimizing interventions along the customer journey. This paper was accepted by Anindya Ghose, information systems. Funding: This work was supported by Adobe Faculty Research Award and the Marketing Science Institute Research Grant. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4914 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈琛发布了新的文献求助10
2秒前
我是老大应助许子峻采纳,获得10
2秒前
科研通AI6.1应助小张采纳,获得10
3秒前
4秒前
是的是的发布了新的文献求助10
4秒前
小胡爱学习完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
ying发布了新的文献求助10
6秒前
6秒前
6秒前
直率的雪巧完成签到,获得积分10
6秒前
boliu完成签到,获得积分10
6秒前
7秒前
7秒前
英俊的铭应助淡淡的南风采纳,获得10
7秒前
GingerF应助淡淡的南风采纳,获得10
7秒前
wanci应助淡淡的南风采纳,获得10
7秒前
领导范儿应助fengdengjin采纳,获得10
7秒前
7秒前
8秒前
阿玺完成签到 ,获得积分10
8秒前
zhang123笛发布了新的文献求助10
8秒前
tjxhtj发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
哈哈发布了新的文献求助10
10秒前
BK_201完成签到,获得积分10
11秒前
GGboooond发布了新的文献求助10
11秒前
xiatian发布了新的文献求助10
11秒前
爆米花应助wen采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6.1应助可乐包饭采纳,获得10
12秒前
NexusExplorer应助zm采纳,获得10
12秒前
jingjing完成签到 ,获得积分10
13秒前
大象放冰箱完成签到,获得积分10
14秒前
白立轩发布了新的文献求助10
14秒前
许子峻完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786223
求助须知:如何正确求助?哪些是违规求助? 5692914
关于积分的说明 15469293
捐赠科研通 4915166
什么是DOI,文献DOI怎么找? 2645571
邀请新用户注册赠送积分活动 1593321
关于科研通互助平台的介绍 1547639