Region Assisted Sketch Colorization

素描 计算机科学 人工智能 像素 编码器 草图识别 块(置换群论) 模式识别(心理学) 特征(语言学) 背景(考古学) 计算机视觉 算法 数学 地理 哲学 操作系统 手势识别 语言学 考古 手势 几何学
作者
Ning Wang,Muyao Niu,Zhihui Wang,Kun Hu,Bin Liu,Zhiyong Wang,Haojie Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6142-6154 被引量:6
标识
DOI:10.1109/tip.2023.3326682
摘要

Automatic sketch colorization is a challenging task that aims to generate a color image from a sketch, primarily due to its inherently ill-posed nature. While many approaches have shown promising results, two significant challenges remain: limited color patterns and a wide range of artifacts such as color bleeding and semantic inconsistencies among relevant regions. These issues stem from the operation of traditional convolutional structures, which capture structural features in a pixel-wise manner, resulting in inadequate utilization of regional information within the sketch. Therefore, we propose the Region-Assisted Sketch Coloring (RASC) method, which introduces an intermediate representation called the 'Region Map' to explicitly characterize the regional information of the sketch. This Region Map is derived from the input sketch and is effectively formulated by our RASC architecture, enhancing the perception of region-wise features beyond the original pixel-wise features. Specifically, we start by employing the sketch encoder to extract hierarchical feature maps from the input sketches. Subsequently, we introduce a coarse-to-fine decoder comprising a series of Region-based Modulation (RM) blocks. This decoder modulates features that combine the modulation results of its previous block and the sketch features of the corresponding encoder block with our Region Formulation module. Each module explicitly formulates the sketch features in a region-wise manner. This accurately captures both the inner-region local style and inter-region global context dependency, resulting in various color patterns and fewer synthesis artifacts. Our experimental results show that our proposed method surpasses state-of-the-art methods in both synthetic and real sketch datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
余味应助科研通管家采纳,获得10
1秒前
cdercder应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得100
1秒前
斯文败类应助科研通管家采纳,获得30
1秒前
余味应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
CyberHamster完成签到,获得积分10
2秒前
gege完成签到,获得积分10
3秒前
3秒前
星辰大海应助郭伟采纳,获得10
5秒前
太叔夜南完成签到,获得积分10
11秒前
聪明的鹤完成签到 ,获得积分10
11秒前
奔奔完成签到 ,获得积分10
14秒前
故酒举报qiu9求助涉嫌违规
16秒前
20秒前
我是老大应助迅速向日葵采纳,获得10
23秒前
FashionBoy应助小郭子采纳,获得10
25秒前
郭伟发布了新的文献求助10
26秒前
风中可仁完成签到 ,获得积分10
27秒前
畅快谷秋完成签到 ,获得积分10
28秒前
cdercder应助poplin采纳,获得30
29秒前
dungaway发布了新的文献求助10
30秒前
李木子完成签到 ,获得积分10
33秒前
好好完成签到,获得积分10
35秒前
35秒前
mymEN完成签到 ,获得积分10
36秒前
小郭子完成签到,获得积分10
37秒前
38秒前
小郭子发布了新的文献求助10
40秒前
草莓熊1215完成签到 ,获得积分10
41秒前
45秒前
123完成签到,获得积分10
45秒前
Likz完成签到,获得积分10
45秒前
茅十八完成签到,获得积分10
46秒前
拓跋半仙完成签到,获得积分0
46秒前
50秒前
liwang9301完成签到,获得积分10
51秒前
mufulee完成签到,获得积分10
58秒前
霍凡白完成签到,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329557
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726