已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

医学 腰痛 物理疗法 社会心理的 物理医学与康复 病理 精神科 替代医学
作者
Daniel L. Belavý,Scott D Tagliaferri,Martin Tegenthoff,Elena Enax-Krumova,Lara Schlaffke,Björn Bühring,Tobias L. Schulte,Sein Schmidt,Hans‐Joachim Wilke,Maia Angelova,Guy Trudel,Katja Ehrenbrusthoff,Bernadette M. Fitzgibbon,Jessica Van Oosterwijck,Clint T. Miller,Patrick J Owen,Steven J. Bowe,Rebekka Döding,Svenja Kaczorowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0282346-e0282346
标识
DOI:10.1371/journal.pone.0282346
摘要

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Liu丰采纳,获得10
1秒前
英俊的铭应助Liu丰采纳,获得10
1秒前
FashionBoy应助Liu丰采纳,获得10
1秒前
大模型应助Liu丰采纳,获得10
1秒前
SciGPT应助Liu丰采纳,获得10
1秒前
Akim应助Liu丰采纳,获得10
1秒前
Lucas应助Liu丰采纳,获得10
1秒前
Alan发布了新的文献求助10
1秒前
Akim应助黄坤强采纳,获得10
1秒前
1秒前
单薄紫菜完成签到 ,获得积分10
2秒前
weibo完成签到,获得积分10
2秒前
2秒前
冷傲向雪发布了新的文献求助10
5秒前
疯狂的石头完成签到 ,获得积分10
6秒前
JamesPei应助Liu丰采纳,获得10
6秒前
CodeCraft应助Liu丰采纳,获得10
6秒前
我是老大应助Liu丰采纳,获得10
6秒前
完美世界应助Liu丰采纳,获得10
6秒前
beiwei完成签到 ,获得积分10
6秒前
ding应助Liu丰采纳,获得10
6秒前
852应助Liu丰采纳,获得10
6秒前
研友_VZG7GZ应助Liu丰采纳,获得10
7秒前
希望天下0贩的0应助Liu丰采纳,获得10
7秒前
无花果应助Liu丰采纳,获得10
7秒前
无花果应助Liu丰采纳,获得10
7秒前
慕青应助Alan采纳,获得10
7秒前
9秒前
wynne313完成签到 ,获得积分10
11秒前
黄坤强给黄坤强的求助进行了留言
12秒前
英姑应助失眠依珊采纳,获得10
12秒前
小雅完成签到,获得积分10
12秒前
12秒前
XinEr完成签到 ,获得积分10
16秒前
yb完成签到,获得积分10
18秒前
闪闪新梅完成签到,获得积分10
20秒前
思源应助木木采纳,获得10
25秒前
内向的火车完成签到 ,获得积分10
26秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639368
求助须知:如何正确求助?哪些是违规求助? 4747831
关于积分的说明 15006164
捐赠科研通 4797476
什么是DOI,文献DOI怎么找? 2563497
邀请新用户注册赠送积分活动 1522525
关于科研通互助平台的介绍 1482230