Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

医学 腰痛 物理疗法 社会心理的 物理医学与康复 病理 精神科 替代医学
作者
Daniel L. Belavý,Scott D Tagliaferri,Martin Tegenthoff,Elena Enax-Krumova,Lara Schlaffke,Björn Bühring,Tobias L. Schulte,Sein Schmidt,Hans‐Joachim Wilke,Maia Angelova,Guy Trudel,Katja Ehrenbrusthoff,Bernadette M. Fitzgibbon,Jessica Van Oosterwijck,Clint T. Miller,Patrick J Owen,Steven J. Bowe,Rebekka Döding,Svenja Kaczorowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0282346-e0282346
标识
DOI:10.1371/journal.pone.0282346
摘要

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明明完成签到,获得积分10
1秒前
淡定的美女完成签到,获得积分10
1秒前
严小之完成签到,获得积分10
3秒前
寒冷半梦完成签到,获得积分10
3秒前
科研通AI6应助狒狒公主采纳,获得10
4秒前
laura完成签到,获得积分10
4秒前
4秒前
4秒前
充电宝应助猪猪hero采纳,获得10
5秒前
852应助天使采纳,获得10
5秒前
汉堡包应助过时的哑铃采纳,获得10
5秒前
西部森林完成签到,获得积分10
5秒前
韩程果完成签到,获得积分10
5秒前
5秒前
李健应助武昂王采纳,获得10
5秒前
香菜头发布了新的文献求助10
6秒前
Orange应助西瓜瓜采纳,获得10
7秒前
韩程果发布了新的文献求助10
7秒前
tom81882发布了新的文献求助30
8秒前
9秒前
天蓝日月潭完成签到 ,获得积分10
9秒前
9秒前
我是老大应助默默襄采纳,获得10
10秒前
英俊的铭应助kelexh采纳,获得10
10秒前
小小菜鸟完成签到,获得积分10
10秒前
Paul111发布了新的文献求助10
10秒前
小白完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
脑洞疼应助MS903采纳,获得10
12秒前
香蕉觅云应助过时的哑铃采纳,获得10
12秒前
13秒前
ww关闭了ww文献求助
13秒前
中和皇极应助无私从雪采纳,获得10
13秒前
14秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
英姑应助zyc采纳,获得10
15秒前
15秒前
chen完成签到 ,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620901
求助须知:如何正确求助?哪些是违规求助? 4705561
关于积分的说明 14932483
捐赠科研通 4763831
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513822
关于科研通互助平台的介绍 1474715