Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

医学 腰痛 物理疗法 社会心理的 物理医学与康复 病理 精神科 替代医学
作者
Daniel L. Belavý,Scott D Tagliaferri,Martin Tegenthoff,Elena Enax-Krumova,Lara Schlaffke,Björn Bühring,Tobias L. Schulte,Sein Schmidt,Hans‐Joachim Wilke,Maia Angelova,Guy Trudel,Katja Ehrenbrusthoff,Bernadette M. Fitzgibbon,Jessica Van Oosterwijck,Clint T. Miller,Patrick J Owen,Steven J. Bowe,Rebekka Döding,Svenja Kaczorowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0282346-e0282346
标识
DOI:10.1371/journal.pone.0282346
摘要

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助无聊的人雄采纳,获得10
1秒前
传统的青亦完成签到,获得积分10
1秒前
善学以致用应助猴Hyj采纳,获得10
1秒前
Asura完成签到,获得积分10
1秒前
青青发布了新的文献求助10
2秒前
2秒前
2秒前
王云霞完成签到,获得积分10
2秒前
乐乐应助Red-Rain采纳,获得10
3秒前
3秒前
titi完成签到,获得积分10
3秒前
芝士完成签到,获得积分10
3秒前
janice116688完成签到,获得积分10
4秒前
4秒前
小二郎应助wmc1357采纳,获得10
6秒前
Sky我的小清新完成签到,获得积分10
6秒前
池棠小荷发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
热心树叶应助遇见采纳,获得30
7秒前
阿萨十大发布了新的文献求助10
8秒前
跳跃完成签到,获得积分10
8秒前
咖啡泡茶发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI2S应助ljy采纳,获得10
9秒前
CipherSage应助冷静采纳,获得10
9秒前
10秒前
10秒前
10秒前
搜集达人应助Liu采纳,获得10
10秒前
FashionBoy应助欢呼的汉堡采纳,获得10
10秒前
Bananana发布了新的文献求助10
11秒前
11秒前
11秒前
XZD发布了新的文献求助10
12秒前
12秒前
高山完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794