Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

医学 腰痛 物理疗法 社会心理的 物理医学与康复 病理 精神科 替代医学
作者
Daniel L. Belavý,Scott D Tagliaferri,Martin Tegenthoff,Elena Enax-Krumova,Lara Schlaffke,Björn Bühring,Tobias L. Schulte,Sein Schmidt,Hans‐Joachim Wilke,Maia Angelova,Guy Trudel,Katja Ehrenbrusthoff,Bernadette M. Fitzgibbon,Jessica Van Oosterwijck,Clint T. Miller,Patrick J Owen,Steven J. Bowe,Rebekka Döding,Svenja Kaczorowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0282346-e0282346
标识
DOI:10.1371/journal.pone.0282346
摘要

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璨澄完成签到 ,获得积分0
1秒前
初一完成签到 ,获得积分10
4秒前
在水一方应助梁jj采纳,获得10
4秒前
斯文败类应助健壮的绿凝采纳,获得10
4秒前
顾矜应助666采纳,获得10
5秒前
赘婿应助大大怪采纳,获得10
8秒前
科研通AI6应助云帆采纳,获得10
8秒前
三三完成签到,获得积分10
16秒前
保藏完成签到,获得积分20
17秒前
24秒前
Criminology34应助Gun采纳,获得10
25秒前
元妹妹完成签到 ,获得积分10
25秒前
26秒前
tomorrow完成签到 ,获得积分10
26秒前
老高完成签到,获得积分10
26秒前
连忘幽发布了新的文献求助10
28秒前
28秒前
30秒前
小李呀发布了新的文献求助10
32秒前
宁祚发布了新的文献求助10
32秒前
future完成签到 ,获得积分10
33秒前
予秋发布了新的文献求助10
33秒前
sssss发布了新的文献求助10
35秒前
大个应助张文静采纳,获得10
36秒前
scitester完成签到,获得积分10
36秒前
梁jj发布了新的文献求助20
37秒前
稻橼发布了新的文献求助10
38秒前
今后应助晴qq采纳,获得10
38秒前
zy完成签到,获得积分10
39秒前
42秒前
43秒前
43秒前
43秒前
戴戴完成签到 ,获得积分10
44秒前
辛勤愚志发布了新的文献求助10
44秒前
44秒前
45秒前
46秒前
46秒前
我爱科研发布了新的文献求助20
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055