Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

医学 腰痛 物理疗法 社会心理的 物理医学与康复 病理 精神科 替代医学
作者
Daniel L. Belavý,Scott D Tagliaferri,Martin Tegenthoff,Elena Enax-Krumova,Lara Schlaffke,Björn Bühring,Tobias L. Schulte,Sein Schmidt,Hans‐Joachim Wilke,Maia Angelova,Guy Trudel,Katja Ehrenbrusthoff,Bernadette M. Fitzgibbon,Jessica Van Oosterwijck,Clint T. Miller,Patrick J Owen,Steven J. Bowe,Rebekka Döding,Svenja Kaczorowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0282346-e0282346
标识
DOI:10.1371/journal.pone.0282346
摘要

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助DreamMaker采纳,获得10
1秒前
量子星尘发布了新的文献求助10
4秒前
忧心的白羊完成签到,获得积分10
4秒前
2424完成签到,获得积分10
5秒前
6秒前
李健的小迷弟应助汪金采纳,获得10
7秒前
7秒前
JamesPei应助李梓权采纳,获得10
7秒前
逍遥发布了新的文献求助10
10秒前
郭郭完成签到,获得积分10
10秒前
11秒前
浮游应助Spteer采纳,获得10
12秒前
大模型应助adsf采纳,获得10
13秒前
13秒前
褚驳发布了新的文献求助10
15秒前
15秒前
15秒前
曾经沛白完成签到 ,获得积分10
16秒前
FashionBoy应助阜睿采纳,获得10
16秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
20秒前
李梓权发布了新的文献求助10
20秒前
风中琦完成签到 ,获得积分10
21秒前
21秒前
快乐的素发布了新的文献求助10
21秒前
李华发布了新的文献求助10
23秒前
25秒前
26秒前
27秒前
27秒前
seven完成签到,获得积分10
30秒前
梦_筱彩发布了新的文献求助10
30秒前
adsf发布了新的文献求助10
31秒前
yyy发布了新的文献求助10
32秒前
柚子发布了新的文献求助10
32秒前
33秒前
浮光完成签到,获得积分0
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424649
求助须知:如何正确求助?哪些是违规求助? 4539035
关于积分的说明 14164752
捐赠科研通 4456058
什么是DOI,文献DOI怎么找? 2444033
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469