Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

医学 腰痛 物理疗法 社会心理的 物理医学与康复 病理 精神科 替代医学
作者
Daniel L. Belavý,Scott D Tagliaferri,Martin Tegenthoff,Elena Enax-Krumova,Lara Schlaffke,Björn Bühring,Tobias L. Schulte,Sein Schmidt,Hans‐Joachim Wilke,Maia Angelova,Guy Trudel,Katja Ehrenbrusthoff,Bernadette M. Fitzgibbon,Jessica Van Oosterwijck,Clint T. Miller,Patrick J Owen,Steven J. Bowe,Rebekka Döding,Svenja Kaczorowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0282346-e0282346
标识
DOI:10.1371/journal.pone.0282346
摘要

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狮山教授发布了新的文献求助200
刚刚
007发布了新的文献求助10
刚刚
1秒前
1秒前
Akim应助秋秋采纳,获得10
1秒前
像风一样发布了新的文献求助20
2秒前
sensen发布了新的文献求助10
2秒前
yucong发布了新的文献求助30
2秒前
Lucas应助cc采纳,获得10
3秒前
淡定自中发布了新的文献求助10
3秒前
科研通AI6应助kk采纳,获得10
3秒前
山神厘子完成签到,获得积分10
4秒前
5秒前
冷傲的广缘完成签到,获得积分10
5秒前
gaogao完成签到,获得积分10
5秒前
7秒前
CodeCraft应助无情丹秋采纳,获得10
7秒前
sarah发布了新的文献求助20
8秒前
10秒前
10秒前
10秒前
10秒前
四玖玖发布了新的文献求助10
11秒前
sunji发布了新的文献求助10
11秒前
12秒前
12秒前
MchemG应助sensen采纳,获得10
12秒前
13秒前
13秒前
QiuQiu发布了新的文献求助10
14秒前
latata发布了新的文献求助10
14秒前
zt发布了新的文献求助10
15秒前
李魏发布了新的文献求助10
15秒前
Ccwyhk发布了新的文献求助10
15秒前
LDDLleor完成签到,获得积分10
16秒前
16秒前
mmz完成签到 ,获得积分10
17秒前
chen完成签到 ,获得积分10
18秒前
余三心发布了新的文献求助10
18秒前
Lucas应助coollz采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329