已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning

隐藏字幕 计算机科学 变压器 特征提取 人工智能 计算机视觉 特征(语言学) 遥感 图像(数学) 语言学 物理 量子力学 电压 地质学 哲学
作者
Lingwu Meng,Jing Wang,Yang Yang,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2023.3328181
摘要

Remote sensing image captioning aims to generate meaningful and grammatically accurate sentences for remote sensing images. However, in comparison to natural image captioning, remote sensing image captioning encounters additional challenges due to the unique characteristics of remote sensing images. The first challenge arises from the abundance of objects present in these images. As the number of objects increases, it becomes increasingly difficult to determine the main focus of the description. Moreover, the objects in remote sensing images often share similar appearances, which further complicates the generation of accurate descriptions. To overcome these challenges, we propose a Prior Knowledge-guided Transformer for remote sensing image captioning. Firstly, scene-level and object-level features are extracted in a Multi-level Feature Extraction module. To further refine and enhance the extracted multi-level features, we introduce a Feature Enhancement module. This module utilizes a combination of graph neural networks and attention mechanisms to capture the correlation and difference between different objects or scene regions. Moreover, we propose a Prior Knowledge augmented Attention mechanism to select the objects that are more relevant to the scene regions by establishing the relationships between them. This attention mechanism is seamlessly integrated into the Transformer structure, providing valuable prior knowledge that promotes the caption generation process. Extensive experiments on three remote sensing image captioning datasets verify the superiority of the proposed method. Compared with the baseline methods, the proposed method achieves more impressive performance. The code will be publicly available at https://github.com/One-paper-luck/PKG-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
7秒前
羽毛完成签到,获得积分10
7秒前
7秒前
小乐举报游舒平求助涉嫌违规
7秒前
8秒前
爆米花应助candice采纳,获得10
10秒前
水巷一人发布了新的文献求助10
10秒前
笨笨西牛完成签到 ,获得积分0
12秒前
李子完成签到,获得积分10
12秒前
绮烟完成签到 ,获得积分10
12秒前
欢呼香完成签到 ,获得积分10
12秒前
vialavilda完成签到,获得积分10
12秒前
13秒前
小新发布了新的文献求助10
13秒前
聪明的可愁完成签到,获得积分10
15秒前
Akim应助boshi采纳,获得10
16秒前
lalala发布了新的文献求助10
18秒前
18秒前
小明应助大胆的魔镜采纳,获得10
20秒前
shinian完成签到 ,获得积分10
21秒前
23秒前
23秒前
24秒前
29秒前
十年完成签到 ,获得积分10
29秒前
亓熙发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
32秒前
怡然大楚发布了新的文献求助10
33秒前
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
A coordinated control system for truck cabin suspension based on model predictive control 420
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680739
求助须知:如何正确求助?哪些是违规求助? 4056758
关于积分的说明 12543825
捐赠科研通 3751601
什么是DOI,文献DOI怎么找? 2071961
邀请新用户注册赠送积分活动 1101137
科研通“疑难数据库(出版商)”最低求助积分说明 980449