Machine learning algorithms for real-time coal recognition using monitor-while-drilling data

演习 煤矿开采 钻探 采矿工程 测井 人工神经网络 人工智能 地质学 机器学习 计算机科学 石油工程 工程类 机械工程 废物管理
作者
Gilles Eric Zagré,Michel Gamache,Richard Labib,Viktor Shlenchak
出处
期刊:International Journal of Mining, Reclamation and Environment [Taylor & Francis]
卷期号:: 1-26
标识
DOI:10.1080/17480930.2023.2243783
摘要

ABSTRACTAccurate coal seam identification is crucial in coal mining to prevent resource wastage and potential damage to coal seams from misplaced explosives. The current industry standard involves drilling past the seam and refilling the hole, a resource-intensive process. Manual seam detection is error-prone, and geophysical logging, performed for only a subset of drill holes, is costly and time-consuming. Monitor-While-Drilling (MWD) data captures drill response metrics like rotary speed and torque, influenced by local geology. These MWD measurements offer insights into geology, including hardness and rock type; They can be used for real-time rock recognition using advanced artificial intelligence techniques. This study focuses on developing tools for precise coal recognition and identification of the top of coal seams using MWD data. Several Machine Learning classifiers are employed, each providing unique data interpretations, and their results are integrated into a more reliable prediction. An artificial neural network is used for rock density regression, which is then used to correct depth offset between geophysical loggings and drill MWD data. The research demonstrates that MWD data can enable real-time coal seam identification, reducing the reliance on time-consuming and expensive geophysical logging. The integrated model accurately identifies the top of coal seams within a ± 20 cm margin.KEYWORDS: Artificial neural networkrock recognitionrock classificationmeasurement-while-drillingmachine learningensemble learning AcknowledgmentsThis project was also supported by the NSERC CRD program: RDCPJ53815-18.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work has been supported and partly funded by Peck Tech Consulting Ltd through the MITACS Accelerate program. The authors are grateful to the Peck Tech Consulting team and management for their valuable input and for providing the supporting data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花完成签到,获得积分10
1秒前
丘比特应助1577采纳,获得10
1秒前
1秒前
1秒前
苏雪丽发布了新的文献求助30
2秒前
3秒前
科研通AI5应助ztq417采纳,获得10
3秒前
Eason完成签到,获得积分10
5秒前
麟龙完成签到,获得积分10
6秒前
gglp发布了新的文献求助10
7秒前
材料学渣发布了新的文献求助10
8秒前
8秒前
8秒前
jiangjiang发布了新的文献求助10
9秒前
强强发布了新的文献求助10
9秒前
Alanni完成签到 ,获得积分10
10秒前
12秒前
星辰大海应助乐正怡采纳,获得10
12秒前
人间烟火发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
夕诙发布了新的文献求助10
15秒前
16秒前
Seven完成签到,获得积分10
18秒前
充电宝应助胡宇采纳,获得10
19秒前
20秒前
orixero应助jiangjiang采纳,获得10
21秒前
香蕉曼凡发布了新的文献求助10
21秒前
22秒前
sajelsch发布了新的文献求助10
23秒前
Enns发布了新的文献求助30
23秒前
25秒前
郭亚丽完成签到,获得积分20
25秒前
26秒前
人间烟火完成签到,获得积分10
26秒前
26秒前
观鹤轩完成签到,获得积分10
26秒前
26秒前
zzwwill完成签到,获得积分10
27秒前
sajelsch完成签到,获得积分10
29秒前
LHNZMZMHK发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693526
求助须知:如何正确求助?哪些是违规求助? 4064300
关于积分的说明 12566713
捐赠科研通 3762634
什么是DOI,文献DOI怎么找? 2078040
邀请新用户注册赠送积分活动 1106392
科研通“疑难数据库(出版商)”最低求助积分说明 984782