已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Work like a doctor: Unifying scan localizer and dynamic generator for automated computed tomography report generation

计算机科学 发电机(电路理论) 人工智能 计算机断层摄影术 任务(项目管理) 模式识别(心理学) 计算机视觉 放射科 医学 功率(物理) 物理 管理 量子力学 经济
作者
Yuhao Tang,Haichen Yang,Liyan Zhang,Ye Yuan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121442-121442 被引量:19
标识
DOI:10.1016/j.eswa.2023.121442
摘要

Computed Tomography Report Generation(CTRG) aims to generate medical reports towards a series of radiological images, which is an advancement of the conventional X-ray report generation (generating one medical description only based on a single X-ray snapshot). Beyond the difficulties faced in the traditional task, CTRG requires the model to filter out the lesion regions from sequential scans, producing a fine-grained report that conforms to medical logic and common sense. Limited to available datasets, there are few methods trying to tackle this task. Besides, although densely aggregating sequential features may be beneficial, it introduces extra noise. Moreover, radiology reports are long narratives composed of abnormal descriptions and template sentences, but most studies ignore this hierarchical nature and generate the entire reports uniformly. This paper aims to bridge the gap from three distinct perspectives: first, we develop two large-scale clinical datasets termed CTRG-Brain-263K and CTRG-Chest-548K, which contain 263670 brain CT scans and 548696 chest CT scans with authoritative diagnosis reports, respectively. Second, we design a self-attention-based Scan Localizer(SL) that captures a representation most reflective of the lesion area. And a reconstruction loss is introduced to minimize the distance between focused and original scans. Finally, we propose a Dynamic Generator(DG) that decouples the decoder into abnormal and template branches, with produced proposals dynamically aggregated for the final generation. Experimental results confirm the proposed SL-DG outperforms existing methods, i.e., about +5.2% and +0.4% CIDEr points on CTRG-Brain-263K and CTRG-Chest-548K, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DARK发布了新的文献求助10
刚刚
彭于晏应助七yy采纳,获得10
1秒前
3秒前
科研通AI6应助短发em采纳,获得30
4秒前
鄂X发布了新的文献求助10
4秒前
SLB24发布了新的文献求助30
4秒前
5秒前
ontheway发布了新的文献求助10
6秒前
HMG1COA完成签到 ,获得积分10
6秒前
ding应助Shelly悦888采纳,获得10
7秒前
白茶完成签到 ,获得积分10
7秒前
大渡河完成签到,获得积分10
9秒前
科研通AI6应助小飞采纳,获得10
9秒前
傲娇的凛发布了新的文献求助10
11秒前
ceeray23应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
时来允转关注了科研通微信公众号
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
dery发布了新的文献求助10
11秒前
zjy完成签到,获得积分10
13秒前
科研通AI6应助zhangjianan采纳,获得10
14秒前
在水一方应助DandanHan0916采纳,获得10
15秒前
悦果完成签到 ,获得积分10
15秒前
傲娇的凛完成签到,获得积分10
17秒前
Live应助Shelly悦888采纳,获得10
19秒前
香蕉觅云应助Breeze采纳,获得10
20秒前
CodeCraft应助大意的语薇采纳,获得10
21秒前
善学以致用应助小飞采纳,获得10
22秒前
23秒前
施少雄发布了新的文献求助10
23秒前
小蘑菇应助Breeze采纳,获得10
25秒前
不在意完成签到 ,获得积分10
25秒前
无事小神仙完成签到 ,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650243
求助须知:如何正确求助?哪些是违规求助? 4780214
关于积分的说明 15051554
捐赠科研通 4809117
什么是DOI,文献DOI怎么找? 2572040
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075