Multi-relational dynamic graph representation learning

计算机科学 拓扑图论 理论计算机科学 图形 动态网络分析 特征学习 代表(政治) 统计关系学习 拓扑(电路) 关系数据库 人工智能 数据挖掘 数学 电压图 折线图 计算机网络 政治 组合数学 政治学 法学
作者
Pingtao Duan,Xiangsheng Ren,Yuting Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:558: 126688-126688 被引量:2
标识
DOI:10.1016/j.neucom.2023.126688
摘要

In recent years, many dynamic graph representation learning methods have emerged due to the ubiquity of dynamic graph networks, such as social networks, medical networks, citation networks and traffic networks. Many researchers only consider the unitary relational topological information in a dynamic graph. However, real dynamic networks contain a large amount of multi-relational topological information. For example, there are different interactive relations such as sending a message, adding a friend, making a phone call, and sending an email in a social network, and they have different effects on node representation and should be distinguished. In addition, the non-topological information of nodes plays an important role in the node representation. Although these two types of information have been shown to improve the performance of many dynamic graph tasks, existing dynamic graph representation learning models could not integrate them well. Therefore, in this paper, we propose MRDGNN, a Multi-Relational Dynamic Graph Neural Network model, which can capture the dynamic evolution under each relational topology in the graph through a temporal multi-relational topology updater, including the participation of multi-relational topological and non-topological information of nodes. These two kinds of information will be adaptively fused into the representation of nodes by a merger. MRDGNN is continuously updated with the evolution of dynamic graphs and is a real-time learnable representation learning framework. Finally, we validate the effectiveness of MRDGNN for link prediction and relation prediction on four real datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助pkaq采纳,获得10
1秒前
yy123发布了新的文献求助10
1秒前
1秒前
星河发布了新的文献求助10
2秒前
沉淀体育生完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助wfd采纳,获得10
2秒前
orixero应助Miraitowa采纳,获得10
3秒前
4秒前
糟糕的万恶应助吴之琳采纳,获得10
4秒前
4秒前
ray发布了新的文献求助10
5秒前
Novermber发布了新的文献求助10
5秒前
彭于晏应助飞快的访枫采纳,获得10
6秒前
养条狗吧发布了新的文献求助10
6秒前
7秒前
宋尔丝发布了新的文献求助10
8秒前
yellow完成签到,获得积分10
9秒前
10秒前
曾无忧发布了新的文献求助10
10秒前
Ting完成签到,获得积分10
10秒前
xing发布了新的文献求助10
10秒前
自闭怪发布了新的文献求助10
11秒前
隐形曼青应助鹊起惊梦采纳,获得10
11秒前
11秒前
星河完成签到,获得积分10
11秒前
12秒前
哈哈完成签到 ,获得积分10
13秒前
akkkes完成签到,获得积分20
13秒前
CAOHOU应助炙热向南采纳,获得10
13秒前
14秒前
14秒前
科研通AI5应助张静瑶采纳,获得10
15秒前
彰武发布了新的文献求助10
15秒前
15秒前
顾矜应助薛定谔的猫采纳,获得10
15秒前
I'm完成签到 ,获得积分10
17秒前
zorro3574完成签到,获得积分10
17秒前
Gzdaigzn完成签到,获得积分10
17秒前
今后应助fy2001采纳,获得10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188023
求助须知:如何正确求助?哪些是违规求助? 3723948
关于积分的说明 11733830
捐赠科研通 3401286
什么是DOI,文献DOI怎么找? 1866474
邀请新用户注册赠送积分活动 923309
科研通“疑难数据库(出版商)”最低求助积分说明 834445