Characterization of Volatile Flavor Compounds in Dry-Rendered Beef Fat by Different Solvent-Assisted Flavor Evaporation (SAFE) Combined with GC–MS, GC–O, and OAV

二氯甲烷 化学 气相色谱-质谱法 萃取(化学) 溶剂 色谱法 戊烷 风味 气味 气相色谱法 甲醇 乙酸乙酯 质谱法 有机化学 食品科学
作者
Xuelian Yang,Zhaoyang Pei,Wenbin Du,Jianchun Xie
出处
期刊:Foods [MDPI AG]
卷期号:12 (17): 3162-3162 被引量:15
标识
DOI:10.3390/foods12173162
摘要

To comprehensively understand the volatile flavor composition of dry-rendered beef fat, solvent-assisted flavor evaporation (SAFE) with four extraction solvents (dichloromethane, pentane, ethyl ether, and methanol) combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactormetry (GC-O) were performed. GC-MS analysis found 96 different volatile compounds in total using the four extraction solvents. According to the GC-MS results and the heat map and principal component analysis (PCA), most of the volatile compounds resulted from dichloromethane and pentane extraction, followed by ethyl ether. Methanol extraction found a few volatile compounds of higher polarity, which was supplementary to the analysis results. Moreover, GC-O analysis found 73 odor-active compounds in total using the four extraction solvents. The GC-O results found that pentane and dichloromethane extraction had a significantly larger number of odor-active compounds than ethyl ether and methanol extraction. This indicated that pentane and dichloromethane were more effective solvents for the extraction of odor-active compounds than the other two solvents. Finally, a total of 15 compounds of odor-active values (OAVs) ≥ 1 were determined to be the key aroma compounds in the dry-rendered beef fat, including 2-methyl-3-furanthiol, 3-methylthiopropanal, (E,E)-2,4-nonadienal, 12-methyltridecanal, and 1-octen-3-one.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
千风完成签到,获得积分10
1秒前
fys完成签到,获得积分10
1秒前
1秒前
1秒前
自由发布了新的文献求助10
2秒前
优雅依玉发布了新的文献求助10
2秒前
Shaw发布了新的文献求助10
2秒前
wuy发布了新的文献求助10
2秒前
3秒前
Wangdx完成签到 ,获得积分10
3秒前
坚定如南发布了新的文献求助10
3秒前
华仔应助迟来的内啡肽采纳,获得10
3秒前
3秒前
科研通AI6应助star采纳,获得10
4秒前
4秒前
LQ发布了新的文献求助10
4秒前
4秒前
任性雍关注了科研通微信公众号
4秒前
科研通AI6应助al采纳,获得10
4秒前
5秒前
5秒前
认真的谷蓝完成签到,获得积分10
5秒前
xiaxiao发布了新的文献求助10
6秒前
6秒前
Costing发布了新的文献求助10
6秒前
6秒前
6秒前
LWERTH完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
wlxs给wlxs的求助进行了留言
6秒前
6秒前
浮游应助LHT采纳,获得10
6秒前
现代的芹发布了新的文献求助10
7秒前
123456qqqq完成签到,获得积分10
7秒前
7秒前
7秒前
慕青应助123采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887