An artificial intelligence tool to assess the risk of severe mental distress among college students in terms of demographics, eating habits, lifestyles, and sport habits: an externally validated study using machine learning

随机森林 机器学习 人工智能 支持向量机 布里氏评分 逻辑回归 决策树 心理健康 召回 人口统计学的 F1得分 苦恼 医学 心理学 计算机科学 临床心理学 精神科 人口学 社会学 认知心理学
作者
Lirong Zhang,Shaocong Zhao,Zhongbing Yang,Hua Zheng,Mingxing Lei
出处
期刊:BMC Psychiatry [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12888-024-06017-2
摘要

Precisely estimating the probability of mental health challenges among college students is pivotal for facilitating timely intervention and preventative measures. However, to date, no specific artificial intelligence (AI) models have been reported to effectively forecast severe mental distress. This study aimed to develop and validate an advanced AI tool for predicting the likelihood of severe mental distress in college students. A total of 2088 college students from five universities were enrolled in this study. Participants were randomly divided into a training group (80%) and a validation group (20%). Various machine learning models, including logistic regression (LR), extreme gradient boosting machine (eXGBM), decision tree (DT), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were employed and trained in this study. Model performance was evaluated using 11 metrics, and the highest scoring model was selected. In addition, external validation was conducted on 751 participants from three universities. The AI tool was then deployed as a web-based AI application. Among the models developed, the eXGBM model achieved the highest area under the curve (AUC) value of 0.932 (95% CI: 0.911–0.949), closely followed by RF with an AUC of 0.927 (95% CI: 0.905–0.943). The eXGBM model demonstrated superior performance in accuracy (0.850), precision (0.824), recall (0.890), specificity (0.810), F1 score (0.856), Brier score (0.103), log loss (0.326), and discrimination slope (0.598). The eXGBM model also received the highest score of 60 based on the evaluation scoring system, while RF achieved a score of 49. The scores of LR, DT, and SVM were only 19, 32, and 36, respectively. External validation yielded an impressive AUC value of 0.918. The AI tool demonstrates promising predictive performance for identifying college students at risk of severe mental distress. It has the potential to guide intervention strategies and support early identification and preventive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jammie完成签到,获得积分10
1秒前
领导范儿应助shineedou采纳,获得30
2秒前
魁梧的语柳完成签到,获得积分10
2秒前
AteeqBaloch发布了新的文献求助10
3秒前
3秒前
小王发布了新的文献求助10
4秒前
6秒前
shirly发布了新的文献求助10
7秒前
奶油布丁完成签到,获得积分10
8秒前
8秒前
大个应助王子采纳,获得10
9秒前
cz完成签到,获得积分10
10秒前
11秒前
蛋堡发布了新的文献求助10
12秒前
12秒前
孙x发布了新的文献求助10
12秒前
天天完成签到 ,获得积分10
15秒前
yangsouth完成签到 ,获得积分10
15秒前
15秒前
16秒前
Jamie发布了新的文献求助10
16秒前
19秒前
年轻元冬完成签到,获得积分10
21秒前
JamesPei应助蛋堡采纳,获得10
21秒前
天天快乐应助跳跃虔采纳,获得10
21秒前
An发布了新的文献求助10
21秒前
万能图书馆应助Mira采纳,获得10
22秒前
22秒前
麦小叮当完成签到,获得积分10
23秒前
23秒前
Star应助xnzll采纳,获得10
24秒前
华仔应助Jamie采纳,获得10
25秒前
村长发布了新的文献求助10
26秒前
李荣航发布了新的文献求助20
27秒前
HL发布了新的文献求助10
27秒前
30秒前
ZhouYW应助ponytail采纳,获得10
31秒前
耍酷的小刺猬完成签到 ,获得积分10
32秒前
bkagyin应助你再说一遍采纳,获得10
33秒前
JamesPei应助大方弘文采纳,获得10
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806853
求助须知:如何正确求助?哪些是违规求助? 3351618
关于积分的说明 10354910
捐赠科研通 3067447
什么是DOI,文献DOI怎么找? 1684519
邀请新用户注册赠送积分活动 809788
科研通“疑难数据库(出版商)”最低求助积分说明 765635