LLM-Enhanced Composed Image Retrieval: An Intent Uncertainty-Aware Linguistic-Visual Dual Channel Matching Model

计算机科学 嵌入 匹配(统计) 人工智能 编码器 情报检索 情态动词 自然语言处理 计算机视觉 数学 统计 操作系统 化学 高分子化学
作者
Hongfei Ge,Yuanchun Jiang,Jianshan Sun,Kun Yuan,Yezheng Liu
标识
DOI:10.1145/3699715
摘要

Composed image retrieval (CoIR) involves a multi-modal query of the reference image and modification text describing the desired changes, allowing users to express image retrieval intents flexibly and effectively. The key of CoIR lies in how to properly reason the search intent from the multi-modal query. Existing work either aligns the composite embedding of the multi-modal query and the target image embedding in the visual domain through late-fusion or converts all images into text descriptions and leverage large language models (LLM) for text semantic reasoning. However, this single-modality reasoning approach fails to comprehensively and interpretably capture the users’ ambiguous and uncertain intents in the multi-modal queries, incurring the inconsistency between retrieved results and ground truth. Besides, the expensive manually annotated datasets limit the further performance improvement of CoIR. To this end, this article proposes an LLM-enhanced Intent Uncertainty-Aware Linguistic-Visual Dual Channel Matching Model (IUDC), which combines the strengths of multi-modal late-fusion and LLMs for CoIR. We first construct an LLM-based triplet augmentation strategy to generate more synthetic training triplets. Based on this, the core of IUDC consists of two matching channels: the semantic matching channel is responsible for intent reasoning on the aspect-level attributes extracted by an LLM, and the visual matching channel accounts for the fine-grained visual matching between multi-modal fusion embedding and target images. Considering the intent uncertainty presented in the multi-modal queries, we introduce Probability Distribution Encoder (PDE) to project the intents as probabilistic distributions in the two matching channels. Consequently, a mutually enhanced module is designed to share knowledge between the visual and semantic representations for better representation learning. Finally, the matching scores of two channels are added to retrieve the target image. Extensive experiments conducted on two real datasets demonstrate the effectiveness and superiority of our model. Notably, with the help of the proposed LLM-based triplet augmentation strategy, our model achieves a new record of state-of-the-art performance among all datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王走发布了新的文献求助10
刚刚
依风发布了新的文献求助10
刚刚
刚刚
1秒前
英姑应助虚幻不弱采纳,获得10
2秒前
sunny66cai完成签到,获得积分10
2秒前
充电宝应助嘘嘘采纳,获得10
3秒前
4秒前
4秒前
啊啊啊完成签到 ,获得积分10
6秒前
欢乐发布了新的文献求助10
7秒前
共享精神应助含蓄洋葱采纳,获得10
7秒前
junjie发布了新的文献求助10
7秒前
YuxinChen发布了新的文献求助10
8秒前
迅速大白完成签到,获得积分10
8秒前
优秀傲松完成签到,获得积分10
9秒前
小飞爱科研完成签到,获得积分10
10秒前
淡然白开水完成签到,获得积分10
10秒前
所所应助范冰冰采纳,获得10
10秒前
糖糖糖唐发布了新的文献求助10
11秒前
Hilda007发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
Han完成签到 ,获得积分20
13秒前
大大王完成签到,获得积分20
14秒前
英姑应助夹心饼干采纳,获得10
14秒前
14秒前
14秒前
李健的小迷弟应助丹妮采纳,获得10
15秒前
15秒前
16秒前
斯文败类应助小小歌2015采纳,获得10
16秒前
酷波er应助忐忑的蛋糕采纳,获得10
16秒前
Pie发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321446
求助须知:如何正确求助?哪些是违规求助? 4463163
关于积分的说明 13889191
捐赠科研通 4354367
什么是DOI,文献DOI怎么找? 2391707
邀请新用户注册赠送积分活动 1385278
关于科研通互助平台的介绍 1355062