Early detection and lesion visualization of pear leaf anthracnose based on multi-source feature fusion of hyperspectral imaging

高光谱成像 人工智能 支持向量机 模式识别(心理学) 计算机科学 数学 生物 园艺
作者
Yingying Zhang,Li Xue,Meiqing Wang,Tao Xu,Kai Huang,Yuanhao Sun,Quanchun Yuan,Xiaohui Lei,Yannan Qi,Xiaolan Lv
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15 被引量:1
标识
DOI:10.3389/fpls.2024.1461855
摘要

Pear anthracnose, caused by Colletotrichum bacteria, is a severe infectious disease that significantly impacts the growth, development, and fruit yield of pear trees. Early detection of pear anthracnose before symptoms manifest is of great importance in preventing its spread and minimizing economic losses. This study utilized hyperspectral imaging (HSI) technology to investigate early detection of pear anthracnose through spectral features, vegetation indices (VIs), and texture features (TFs). Healthy and diseased pear leaves aged 1 to 5 days were selected as subjects for capturing hyperspectral images at various stages of health and disease. Characteristic wavelengths (OWs1 and OWs2) were extracted using the Successive Projection Algorithm (SPA) and Competitive Adaptive Reweighted Sampling (CARS) algorithm. Significant VIs were identified using the Random Forest (RF) algorithm, while effective TFs were derived from the Gray Level Co-occurrence Matrix (GLCM). A classification model for pear leaf early anthracnose disease was constructed by integrating different features using three machine learning algorithms: Support Vector Machine (SVM), Extreme Learning Machine (ELM), and Back Propagation Neural Network (BPNN). The results showed that: the classification identification model constructed based on the feature fusion performed better than that of single feature, with the OWs2-VIs-TFs-BPNN model achieving a highest accuracy of 98.61% in detection and identification of pear leaf early anthracnose disease. Additionally, to intuitively and effectively monitor the progression and severity of anthracnose in pear leaves, the visualization of anthracnose lesions was achieved using Successive Maximum Angle Convex Cone (SMACC) and Spectral Information Divergence (SID) techniques. According to our research results, the fusion of multi-source features based on hyperspectral imaging can be a reliable method to detect early asymptomatic infection of pear leaf anthracnose, and provide scientific theoretical support for early warning and prevention of pear leaf diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑旭辉发布了新的文献求助10
1秒前
眼药水完成签到,获得积分20
2秒前
2秒前
3秒前
KK完成签到 ,获得积分10
4秒前
周小鱼发布了新的文献求助10
4秒前
Simple完成签到,获得积分10
5秒前
眼药水发布了新的文献求助20
5秒前
ScholarZmm完成签到,获得积分10
6秒前
郑旭辉完成签到,获得积分10
7秒前
17发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI5应助春晓采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
qiqi发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
orixero应助galaxy采纳,获得10
12秒前
SciGPT应助TK采纳,获得10
15秒前
开心的半仙完成签到 ,获得积分10
15秒前
17秒前
JJ完成签到,获得积分10
18秒前
RONG发布了新的文献求助60
18秒前
深情安青应助龙梦采纳,获得10
20秒前
21秒前
gypsy发布了新的文献求助10
21秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451