Aggressiveness classification of clear cell renal cell carcinoma using registration‐independent radiology‐pathology correlation learning

肾透明细胞癌 医学 放射科 肾细胞癌 外科病理学 活检 病理 肾脏病理学 人工智能 内科学 计算机科学
作者
Indrani Bhattacharya,Karin Stacke,Emily Chan,Jeong Hoon Lee,Justin R. Tse,Tie Liang,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17476
摘要

Abstract Background Renal cell carcinoma (RCC) is a common cancer that varies in clinical behavior. Clear cell RCC (ccRCC) is the most common RCC subtype, with both aggressive and indolent manifestations. Indolent ccRCC is often low‐grade without necrosis and can be monitored without treatment. Aggressive ccRCC is often high‐grade and can cause metastasis and death if not promptly detected and treated. While most RCCs are detected on computed tomography (CT) scans, aggressiveness classification is based on pathology images acquired from invasive biopsy or surgery. Purpose CT imaging‐based aggressiveness classification would be an important clinical advance, as it would facilitate non‐invasive risk stratification and treatment planning. Here, we present a novel machine learning method, Correlated Feature Aggregation By Region (CorrFABR), for CT‐based aggressiveness classification of ccRCC. Methods CorrFABR is a multimodal fusion algorithm that learns from radiology and pathology images, and clinical variables in a clinically‐relevant manner. CorrFABR leverages registration‐independent radiology (CT) and pathology image correlations using features from vision transformer‐based foundation models to facilitate aggressiveness assessment on CT images. CorrFABR consists of three main steps: (a) Feature aggregation where region‐level features are extracted from radiology and pathology images at widely varying image resolutions, (b) Fusion where radiology features correlated with pathology features (pathology‐informed CT biomarkers) are learned, and (c) Classification where the learned pathology‐informed CT biomarkers, together with clinical variables of tumor diameter, gender, and age, are used to distinguish aggressive from indolent ccRCC using multi‐layer perceptron‐based classifiers. Pathology images are only required in the first two steps of CorrFABR, and are not required in the prediction module. Therefore, CorrFABR integrates information from CT images, pathology images, and clinical variables during training, but for inference, it relies solely on CT images and clinical variables, ensuring its clinical applicability. CorrFABR was trained with heterogenous, publicly‐available data from 298 ccRCC tumors (136 indolent tumors, 162 aggressive tumors) in a five‐fold cross‐validation setup and evaluated on an independent test set of 74 tumors with a balanced distribution of aggressive and indolent tumors. Ablation studies were performed to test the utility of each component of CorrFABR. Results CorrFABR outperformed the other classification methods, achieving an ROC‐AUC (area under the curve) of 0.855 ± 0.0005 (95% confidence interval: 0.775, 0.947), F1‐score of 0.793 ± 0.029, sensitivity of 0.741 ± 0.058, and specificity of 0.876 ± 0.032 in classifying ccRCC as aggressive or indolent subtypes. It was found that pathology‐informed CT biomarkers learned through registration‐independent correlation learning improves classification performance over using CT features alone, irrespective of the kind of features or the classification model used. Tumor diameter, gender, and age provide complementary clinical information, and integrating pathology‐informed CT biomarkers with these clinical variables further improves performance. Conclusion CorrFABR provides a novel method for CT‐based aggressiveness classification of ccRCC by enabling the identification of pathology‐informed CT biomarkers, and integrating them with clinical variables. CorrFABR enables learning of these pathology‐informed CT biomarkers through a novel registration‐independent correlation learning module that considers unaligned radiology and pathology images at widely varying image resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ww完成签到,获得积分10
2秒前
赘婿应助lee采纳,获得10
2秒前
科研通AI2S应助剑来不来采纳,获得10
4秒前
4秒前
Amazing_Grace发布了新的文献求助10
6秒前
duo关闭了duo文献求助
6秒前
xy发布了新的文献求助10
6秒前
香蕉觅云应助shinn采纳,获得10
6秒前
LLLLL发布了新的文献求助30
6秒前
9秒前
大模型应助mzl采纳,获得10
10秒前
12秒前
13秒前
隐形曼青应助陈江河采纳,获得10
13秒前
luxi0714完成签到,获得积分20
13秒前
14秒前
lwh104完成签到,获得积分0
18秒前
理理完成签到 ,获得积分10
18秒前
fdzzz发布了新的文献求助10
18秒前
19秒前
领导范儿应助彩色飞瑶采纳,获得10
20秒前
21秒前
bobo呀发布了新的文献求助10
22秒前
陈江河发布了新的文献求助10
25秒前
小蚂蚁发布了新的文献求助10
27秒前
可靠馒头完成签到,获得积分10
27秒前
徐鎏洋完成签到 ,获得积分10
34秒前
小慧儿发布了新的文献求助10
35秒前
37秒前
昏睡的傲菡完成签到 ,获得积分10
38秒前
zy发布了新的文献求助10
40秒前
酥瓜完成签到 ,获得积分10
41秒前
42秒前
sun完成签到,获得积分10
43秒前
鲷哥发布了新的文献求助20
44秒前
所所应助端庄白开水采纳,获得10
45秒前
mnhkj发布了新的文献求助10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171390
求助须知:如何正确求助?哪些是违规求助? 3706898
关于积分的说明 11695659
捐赠科研通 3392544
什么是DOI,文献DOI怎么找? 1860795
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754