清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Finite element modeling for analyzing the production of high-strength steel sheets for automobile parts

有限元法 汽车工业 生产(经济) 高强度钢 制造工程 材料科学 结构工程 机械工程 工程类 冶金 航空航天工程 宏观经济学 经济
作者
Apichat Sanrutsadakorn,Napatsakorn Jhonthong,Weerapong Julsri
出处
期刊:Materials research express [IOP Publishing]
卷期号:11 (10): 106524-106524 被引量:1
标识
DOI:10.1088/2053-1591/ad88df
摘要

Abstract An investigation was conducted on developing components from high-strength steel sheet grade 590, with a thickness of 2.40 millimeters, using finite element analysis. The focus was on predicting springback and deviation behavior during the manufacturing process of a Member C inner workpiece. The research comprised a comprehensive examination of chemical composition, microstructural analysis, and mechanical property testing to establish suitable material models for the forming process. Three material models were evaluated for accuracy, including the Barlat89 yield criteria, the Y-U model, and the Barlat89 yield criteria + Y-U model. Cyclic tension-compression tests were used to determine the parameters of the Barlat89 yield criteria + Y-U model, which were then confirmed using the 1-element model. The predicted bend angles for the manufactured samples were highly consistent with the experimental measurements. The three models were used to predict the strain distribution, springback and deviation behavior in the produced components. The results indicated that all three material models produced similar results in terms of strain distribution. However, the Barlat89 yield criteria + Y-U model exhibited the least inaccuracy when all seven sections were averaged, with angles θ 1L of 93.66 degrees and θ 1R of 93.13 degrees, underscoring its superior performance in predicting springback. The deviation behavior predicted by the three material model simulations was very comparable. Consequently, it can be concluded that the Barlat89 yield criteria + Y-U model represented the most precise and suitable choice for simulating the formation of the Member C inner component.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
久顾南川完成签到 ,获得积分10
3秒前
8秒前
17秒前
32秒前
37秒前
李爱国应助科研通管家采纳,获得10
41秒前
科研通AI6.1应助剑K采纳,获得10
42秒前
47秒前
50秒前
53秒前
剑K发布了新的文献求助10
57秒前
1分钟前
1分钟前
FashionBoy应助千里缠娟采纳,获得10
1分钟前
剑K完成签到,获得积分10
1分钟前
坚强觅珍完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
gmc完成签到 ,获得积分10
1分钟前
天天赚积分完成签到,获得积分10
1分钟前
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
千里缠娟发布了新的文献求助10
1分钟前
2分钟前
wood完成签到,获得积分10
2分钟前
Able完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yyy完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
但行好事发布了新的文献求助10
2分钟前
2分钟前
香蕉觅云应助但行好事采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
不知道叫个啥完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732677
求助须知:如何正确求助?哪些是违规求助? 5341756
关于积分的说明 15322424
捐赠科研通 4878098
什么是DOI,文献DOI怎么找? 2620950
邀请新用户注册赠送积分活动 1570081
关于科研通互助平台的介绍 1526853