Development and interpretation of a multimodal predictive model for prognosis of gastrointestinal stromal tumor

主旨 医学 间质瘤 队列 H&E染色 医学诊断 列线图 放射科 模式治疗法 内科学 病理 间质细胞 肿瘤科 免疫组织化学
作者
XianHao Xiao,Xu Han,YeFei Sun,Guoliang Zheng,Miao Qi,Yulong Zhang,JiaYing Tan,Gang Liu,QianRu He,Jianping Zhou,Zhichao Zheng,GuiYang Jiang,Song He
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1) 被引量:7
标识
DOI:10.1038/s41698-024-00636-4
摘要

Abstract Gastrointestinal stromal tumor (GIST) is the most common mesenchymal original tumor in gastrointestinal (GI) tract and is considered to have varying malignant potential. With the advancement of computer science, radiomics technology and deep learning had been applied in medical researches. It’s vital to construct a more accurate and reliable multimodal predictive model for recurrence-free survival (RFS) aiding for clinical decision-making. A total of 254 patients underwent surgery and pathologically diagnosed with GIST in The First Hospital of China Medical University from 2019 to 2022 were included in the study. Preoperative contrast enhanced computerized tomography (CE-CT) and hematoxylin/eosin (H&E) stained whole slide images (WSI) were acquired for analysis. In the present study, we constructed a sum of 11 models while the multimodal model (average C-index of 0.917 on validation set in 10-fold cross validation) performed the best on external validation cohort with an average C-index of 0.864. The multimodal model also reached statistical significance when validated in the external validation cohort ( n = 42) with a p-value of 0.0088 which pertained to the recurrence-free survival (RFS) comparison between the high and low groups using the optimal threshold on the predictive score. We also explored the biological significance of radiomics and pathomics features by visualization and quantitative analysis. In the present study, we constructed a multimodal model predicting RFS of GIST which was prior over unimodal models. We also proposed hypothesis on the correlation between morphology of tumor cell and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助出其东门采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Twonej应助天真乌冬面采纳,获得30
5秒前
猪猪侠应助天真乌冬面采纳,获得10
5秒前
在水一方应助天真乌冬面采纳,获得10
5秒前
香蕉觅云应助天真乌冬面采纳,获得10
5秒前
在水一方应助天真乌冬面采纳,获得10
5秒前
乐乐应助天真乌冬面采纳,获得10
5秒前
脑洞疼应助天真乌冬面采纳,获得10
5秒前
深情安青应助天真乌冬面采纳,获得10
5秒前
充电宝应助天真乌冬面采纳,获得10
5秒前
7秒前
Ray发布了新的文献求助10
7秒前
Jacky完成签到,获得积分10
7秒前
ding完成签到,获得积分10
8秒前
爱听歌的寄真完成签到,获得积分10
9秒前
zss发布了新的文献求助10
9秒前
Pro发布了新的文献求助10
9秒前
Zee发布了新的文献求助10
10秒前
10秒前
嘿哈哈完成签到,获得积分10
10秒前
11秒前
映之发布了新的文献求助10
12秒前
12秒前
13秒前
阿智完成签到,获得积分20
15秒前
SciGPT应助苏格拉没有底采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
泥巴发布了新的文献求助10
16秒前
yanyuqing发布了新的文献求助10
16秒前
畅快的俊驰关注了科研通微信公众号
17秒前
rrrrrrry发布了新的文献求助10
18秒前
SciGPT应助heal采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713510
求助须知:如何正确求助?哪些是违规求助? 5216103
关于积分的说明 15271135
捐赠科研通 4865261
什么是DOI,文献DOI怎么找? 2611946
邀请新用户注册赠送积分活动 1562153
关于科研通互助平台的介绍 1519378