已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical Federated Model with Mixture of Personalized and Shared Components

计算机科学 人工智能 组分(热力学) 情报检索 物理 热力学
作者
Yawei Zhao,Qinghe Liu,Pan Liu,Xinwang Liu,Kunlun He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:2
标识
DOI:10.1109/tpami.2024.3470072
摘要

Although data-driven methods usually have noticeable performance on disease diagnosis and treatment, they are suspected of leakage of privacy due to collecting data for model training. Recently, federated learning provides a secure and trustable alternative to collaboratively train model without any exchange of medical data among multiple institutes. Therefore, it has draw much attention due to its natural merit on privacy protection. However, when heterogenous medical data exists between different hospitals, federated learning usually has to face with degradation of performance. In the paper, we propose a new personalized framework of federated learning to handle the problem. It successfully yields personalized models based on awareness of similarity between local data, and achieves better tradeoff between generalization and personalization than existing methods. After that, we further design a differentially sparse regularizer to improve communication efficiency during procedure of model training. Additionally, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly. Furthermore, we collect five real medical datasets, including two public medical image datasets and three private multi-center clinical diagnosis datasets, and evaluate its performance by conducting nodule classification, tumor segmentation, and clinical risk prediction tasks. Comparing with 14 existing related methods, the proposed method successfully achieves the best model performance, and meanwhile up to 60% improvement of communication efficiency. Source code is public, and can be accessed at: https://github.com/ ApplicationTechnologyOfMedicalBigData/pFedNet-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我说我话完成签到 ,获得积分10
刚刚
鸣蜩十三完成签到,获得积分10
刚刚
SharonDu完成签到 ,获得积分10
刚刚
水若琳完成签到,获得积分10
1秒前
张元东完成签到 ,获得积分10
1秒前
爱咋咋地完成签到 ,获得积分10
2秒前
兰月满楼完成签到 ,获得积分10
2秒前
没有查不到的文献完成签到 ,获得积分10
2秒前
2秒前
欣欣完成签到 ,获得积分10
3秒前
鲁丁丁完成签到 ,获得积分10
3秒前
4秒前
伊蕾娜完成签到 ,获得积分10
4秒前
整齐凝竹完成签到 ,获得积分10
4秒前
遇上就这样吧完成签到,获得积分0
5秒前
符fu完成签到 ,获得积分10
5秒前
奋斗的小笼包完成签到 ,获得积分10
7秒前
Hzk_发布了新的文献求助10
7秒前
AnJaShua完成签到 ,获得积分10
7秒前
lalala完成签到 ,获得积分10
8秒前
文渊完成签到,获得积分0
8秒前
zonghonghan完成签到 ,获得积分10
9秒前
消逝完成签到 ,获得积分10
10秒前
医疗废物专用车乘客完成签到,获得积分10
10秒前
Ray羽曦~完成签到 ,获得积分10
11秒前
LXM丶完成签到,获得积分10
11秒前
Healer完成签到 ,获得积分10
11秒前
fang完成签到,获得积分10
12秒前
Benjamin完成签到 ,获得积分10
12秒前
细心青雪完成签到 ,获得积分10
13秒前
xiuxiuzhang完成签到 ,获得积分10
13秒前
QMCL完成签到,获得积分10
14秒前
秋秋完成签到,获得积分10
14秒前
Hzk_完成签到,获得积分10
15秒前
ZQL完成签到,获得积分10
15秒前
Lucas应助reborn采纳,获得10
15秒前
766465完成签到 ,获得积分0
15秒前
gk123kk完成签到,获得积分0
16秒前
EED完成签到 ,获得积分10
18秒前
美满的乐瑶完成签到 ,获得积分10
18秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824836
求助须知:如何正确求助?哪些是违规求助? 3367210
关于积分的说明 10444654
捐赠科研通 3086444
什么是DOI,文献DOI怎么找? 1698024
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769840

今日热心研友

TaoJ
2 10
xzy998
1
4399电竞选手
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10