Effects of nanoparticle size, shape, and zeta potential on drug delivery

Zeta电位 纳米颗粒 药物输送 制药技术 粒径 纳米技术 化学 化学工程 材料科学 色谱法 物理化学 工程类
作者
Kıvılcım Öztürk,Meryem Kaplan,Sema Çalış
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:666: 124799-124799 被引量:187
标识
DOI:10.1016/j.ijpharm.2024.124799
摘要

Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊村村长完成签到,获得积分10
刚刚
1秒前
孔令琦发布了新的文献求助10
1秒前
2秒前
HJJHJH发布了新的文献求助10
2秒前
Orange应助OrtonF7采纳,获得10
3秒前
3秒前
完美世界应助徐爱琳采纳,获得10
3秒前
3秒前
lisiyu完成签到,获得积分10
4秒前
为不争发布了新的文献求助10
4秒前
lanmin完成签到,获得积分10
4秒前
深情安青应助淡淡尔烟采纳,获得10
4秒前
5秒前
今后应助dg采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Bingbingbing完成签到,获得积分10
7秒前
7秒前
8秒前
乐乐应助Xueanliu采纳,获得10
8秒前
8秒前
开心的吗喽完成签到 ,获得积分10
8秒前
在水一方应助薄荷源星球采纳,获得10
9秒前
风清扬发布了新的文献求助10
9秒前
Crisp发布了新的文献求助10
9秒前
9秒前
9秒前
lanmin发布了新的文献求助10
9秒前
高玉峰发布了新的文献求助10
10秒前
nini应助HJJHJH采纳,获得10
10秒前
11秒前
11秒前
归尘发布了新的文献求助10
11秒前
hi_traffic发布了新的文献求助10
11秒前
12秒前
13秒前
Dongjie发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774