Long-term prognostic value of CT-based high-risk coronary lesion attributes and radiomic features of pericoronary adipose tissue in diabetic patients

医学 脂肪组织 期限(时间) 糖尿病 病变 价值(数学) 内科学 放射科 心脏病学 病理 机器学习 内分泌学 计算机科学 量子力学 物理
作者
Wen‐Yi Yang,Xiaoying Ding,Yimin Yu,Lan Zhang,Lan Yu,Jianlong Yuan,Z. Xu,Jie Sun,Yuepeng Wang,Jiayin Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (12): 931-940 被引量:1
标识
DOI:10.1016/j.crad.2024.08.018
摘要

Highlights•High CACS, obstructive stenosis, and HRP were linked with MACE in diabetics.•Combining clinical factors and CT parameters effectively predicts MACE in diabetics.•PCAT radiomic features did not enhance risk stratification for MACE in diabetics.AbstractAimsTo investigate the long-term prognostic value of coronary computed tomography angiography (CCTA)-derived high-risk attributes and radiomic features of pericoronary adipose tissue (PCAT) in diabetic patients for predicting major adverse cardiac event (MACE).Methods and ResultsDiabetic patients with intermediate pre-test probability of coronary artery disease were prospectively enrolled and referred for CCTA. Three models (model-1 with clinical parameters; model-2 with clinical factors + CCTA imaging parameters; model-3 with the above parameters and PCAT radiomic features) were developed in the training cohort (835 patients) and tested in the independent validation cohort (557 patients). 1392 patients were included and MACEs occurred in 108 patients (7.8%). Multivariable Cox regression analysis revealed that HbA1c, coronary calcium Agatston score, significant stenosis and high-risk plaque were independent predictors for MACE whereas none of PCAT radiomic features showed predictive value. In the training cohort, model-2 demonstrated higher predictive performance over model-1 (C-index = 0.79 vs. 0.68, p < 0.001) whereas model-3 did not show incremental value over model-2(C-index = 0.79 vs. 0.80, p = 0.408). Similar findings were found in the validation cohort.ConclusionsThe combined model (clinical and CCTA high-risk anatomical features) demonstrated high efficacy in predicting MACE in diabetes. PCAT radiomic features failed to show incremental value for risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性凤凰发布了新的文献求助10
1秒前
小蘑菇应助zzzz采纳,获得10
2秒前
扳迪发布了新的文献求助10
2秒前
卷毛狗发布了新的文献求助10
3秒前
多和5的武器完成签到,获得积分10
4秒前
张振宇完成签到 ,获得积分10
8秒前
8秒前
zhou完成签到,获得积分10
10秒前
任性凤凰完成签到,获得积分20
11秒前
倪倪完成签到,获得积分10
13秒前
qs发布了新的文献求助10
13秒前
我是老大应助首席或雪月采纳,获得10
14秒前
Atom完成签到,获得积分10
15秒前
彬子完成签到,获得积分10
15秒前
在水一方应助changnan采纳,获得10
16秒前
18秒前
adam完成签到,获得积分10
18秒前
mc发布了新的文献求助10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
qiao应助科研通管家采纳,获得10
19秒前
19秒前
Lucas应助任性凤凰采纳,获得10
20秒前
大咖发布了新的文献求助10
22秒前
潘辉完成签到,获得积分10
23秒前
科研通AI5应助三幅画采纳,获得10
24秒前
科研通AI5应助三幅画采纳,获得10
24秒前
匀速前行发布了新的文献求助10
24秒前
夏小安完成签到,获得积分10
25秒前
25秒前
马哥二弟无敌完成签到 ,获得积分10
27秒前
28秒前
29秒前
liu关闭了liu文献求助
30秒前
31秒前
qs完成签到,获得积分20
31秒前
李爱国应助poki采纳,获得10
32秒前
隐形曼青应助匀速前行采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979