A machine learning–based Coagulation Risk Index predicts acute traumatic coagulopathy in bleeding trauma patients

医学 凝血病 损伤严重程度评分 创伤中心 置信区间 复苏 接收机工作特性 麻醉 急诊医学 内科学 毒物控制 回顾性队列研究 伤害预防
作者
Justin E. Richards,Shiming Yang,Rosemary A. Kozar,Thomas M. Scalea,Peter Hu
出处
期刊:The journal of trauma and acute care surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:98 (4): 614-620 被引量:8
标识
DOI:10.1097/ta.0000000000004463
摘要

BACKGROUND Acute traumatic coagulopathy (ATC) is a well-described phenomenon known to begin shortly after injury. This has profound implications for resuscitation from hemorrhagic shock, as ATC is associated with increased risk for massive transfusion (MT) and mortality. We describe a large-data machine learning–based Coagulation Risk Index (CRI) to test the early prediction of ATC in bleeding trauma patients. METHODS Coagulation Risk Index was developed using continuous vital signs (VSs) available during the first 15 minutes after admission at a single trauma center over 4 years. Data to compute the CRI were derived from continuous features of photoplethymographic and electrocardiographic waveforms, oximetry values, and blood pressure trends. Two groups of patients at risk for ATC were evaluated: critical administration threshold and patients who received an MT. Acute traumatic coagulopathy was evaluated in separate models and defined as an international normalized ratio (INR) >1.2 and >1.5 upon arrival. The CRI was developed using 2 years of cases for training and 2 years for testing. The accuracy of the models is described by area under the receiver operator curve with 95% confidence intervals. RESULTS A total of 17,567 patients were available for analysis with continuous VS data, 52.8% sustained blunt injury, 30.2% were female, and the mean age was 44.6 years. The ability of CRI to predict ATC in critical administration threshold patients was excellent. The true positive and true negative rates were 95.6% and 88.3%, and 94.9% and 89.2% for INR >1.2 and INR >1.5, respectively. The CRI also demonstrated excellent accuracy in patients receiving MT; true positive and true negative rates were 92.8% and 91.3%, and 100% and 88.1% for INR >1.2 and INR >1.5, respectively. CONCLUSION Using continuous VSs and large-data machine learning capabilities, the CRI accurately predicts early ATC in bleeding patients. Clinical application may guide early hemostatic resuscitation. Extension of this technology into the prehospital setting could provide earlier treatment of ATC. LEVEL OF EVIDENCE Diagnostic Tests/Criteria; Level III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
左丘映易完成签到,获得积分0
14秒前
kanong完成签到,获得积分0
22秒前
翁雁丝完成签到 ,获得积分10
22秒前
Criminology34应助kardson采纳,获得10
25秒前
田田完成签到 ,获得积分10
25秒前
火星上的雨柏完成签到 ,获得积分10
28秒前
Damon完成签到 ,获得积分10
28秒前
赖氨酸完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
舒适涵山完成签到,获得积分10
39秒前
pengyh8完成签到 ,获得积分10
44秒前
11111111完成签到,获得积分10
48秒前
50秒前
喵喵喵完成签到 ,获得积分10
50秒前
泥嚎完成签到,获得积分10
54秒前
姬鲁宁完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
55秒前
努力加油煤老八完成签到 ,获得积分0
56秒前
香蕉新儿完成签到,获得积分10
58秒前
炸鲜奶完成签到 ,获得积分10
1分钟前
呼延坤完成签到 ,获得积分10
1分钟前
神经蛙完成签到 ,获得积分10
1分钟前
1分钟前
gms完成签到,获得积分10
1分钟前
南星完成签到 ,获得积分10
1分钟前
等待小丸子完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
执着的以筠完成签到 ,获得积分10
1分钟前
大饼完成签到 ,获得积分10
1分钟前
艳艳宝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
一颗困困豆耶完成签到 ,获得积分10
1分钟前
wave8013完成签到 ,获得积分10
1分钟前
玉鱼儿完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
changfox完成签到,获得积分10
1分钟前
简爱完成签到 ,获得积分10
2分钟前
77完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622390
求助须知:如何正确求助?哪些是违规求助? 4707674
关于积分的说明 14939266
捐赠科研通 4772050
什么是DOI,文献DOI怎么找? 2552385
邀请新用户注册赠送积分活动 1514431
关于科研通互助平台的介绍 1475119