Fault diagnosis for lithium-ion battery energy storage systems based on local outlier factor

热失控 锂(药物) 可靠性工程 电池(电) 锂离子电池 断层(地质) 离群值 局部异常因子 储能 工作(物理) 计算机科学 工程类 人工智能 医学 物理 功率(物理) 量子力学 地震学 地质学 内分泌学 机械工程
作者
Yishu Qiu,Ti Dong,Da Lin,Bo Zhao,Wenjiong Cao,Fangming Jiang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:55: 105470-105470 被引量:37
标识
DOI:10.1016/j.est.2022.105470
摘要

Lithium-ion batteries (LIBs), when faulty or operating under abnormal conditions, can cause fire accidents, consequently, the enhancement of LIBs safety is a key priority for their large-scale application. This goal can be achieved by fault diagnosis, which aims detecting the abuse conditions and diagnosing the faulty batteries at the early stage to prevent them from developing into thermal runaway . In this work, the local outlier factor (LOF) method is adopted to conduct fault diagnosis for energy storage systems based on LIBs (LIB ESSs). Two input generation algorithms, i.e., the multiple factors at single time step input generation (MFST) algorithm and the single factor at multiple time steps input generation (SFMT) algorithm are proposed for the LOF method. Moreover, in order to simulate different severe levels of internal short circuit (ISC), an ISC model is added to the electrical-thermal coupled model for an air-cooled LIB ESS. Then the performance of the LOF method in detecting different severe levels of ISC are studied based on the simulated data from this air-cooled LIB ESS as well as the experimental data from a water-cooled LIB ESS. The LOF method is proved to be effective in detecting the faulty cell at three different ISC severe levels (with 1 Ω, 10 Ω and 100 Ω ISC resistance, respectively) in the air-cooled LIB ESS and two faulty cells in which the equivalent ISC resistances are 100 Ω and 25 Ω, respectively, in the water-cooled LIB ESS. • Different input generation algorithms are proposed for LOF method. • The LOF method is adopted to conduct fault diagnosis for LIB ESSs. • An electrical-thermal-ISC coupled model is developed for LIB ESSs. • Simulated and experimental data prove the effectiveness of the LOF method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
凶狠的期待完成签到,获得积分10
6秒前
panqi77发布了新的文献求助10
6秒前
天天向上发布了新的文献求助10
8秒前
9秒前
Luminous1123发布了新的文献求助10
13秒前
orixero应助譬如人间烟火色采纳,获得10
14秒前
15秒前
panqi77完成签到,获得积分10
15秒前
乐乐应助Stephen采纳,获得10
21秒前
Luminous1123完成签到,获得积分10
22秒前
29秒前
Luna爱科研完成签到 ,获得积分10
34秒前
wf完成签到,获得积分10
37秒前
隐形曼青应助哎呀采纳,获得10
41秒前
42秒前
50秒前
蓝莲花完成签到 ,获得积分10
54秒前
1分钟前
科研通AI5应助美满寄松采纳,获得30
1分钟前
1分钟前
1分钟前
双儿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
糖炒李子完成签到 ,获得积分10
1分钟前
hhhh6666发布了新的文献求助10
1分钟前
polite发布了新的文献求助10
1分钟前
1分钟前
美满寄松发布了新的文献求助30
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
知了完成签到 ,获得积分10
1分钟前
1分钟前
爱学习的医学小白完成签到 ,获得积分10
1分钟前
1分钟前
譬如人间烟火色完成签到 ,获得积分20
1分钟前
MchemG应助RIchard采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781947
求助须知:如何正确求助?哪些是违规求助? 3327479
关于积分的说明 10231578
捐赠科研通 3042395
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799461
科研通“疑难数据库(出版商)”最低求助积分说明 758822