Visual language integration: A survey and open challenges

计算机科学 任务(项目管理) 人工智能 人机交互 具身认知 组分(热力学) 特征(语言学) 深度学习 机器学习 系统工程 语言学 热力学 物理 工程类 哲学
作者
Sang-Min Park,Young-Gab Kim
出处
期刊:Computer Science Review [Elsevier BV]
卷期号:48: 100548-100548
标识
DOI:10.1016/j.cosrev.2023.100548
摘要

With the recent development of deep learning technology comes the wide use of artificial intelligence (AI) models in various domains. AI shows good performance for definite-purpose tasks, such as image recognition and text classification. The recognition performance for every single task has become more accurate than feature engineering, enabling more work that could not be done before. In addition, with the development of generation technology (e.g., GPT-3), AI models are showing stable performances in each recognition and generation task. However, not many studies have focused on how to integrate these models efficiently to achieve comprehensive human interaction. Each model grows in size with improved performance, thereby consequently requiring more computing power and more complicated designs to train than before. This requirement increases the complexity of each model and requires more paired data, making model integration difficult. This study provides a survey on visual language integration with a hierarchical approach for reviewing the recent trends that have already been performed on AI models among research communities as the interaction component. We also compare herein the strengths of existing AI models and integration approaches and the limitations they face. Furthermore, we discuss the current related issues and which research is needed for visual language integration. More specifically, we identify four aspects of visual language integration models: multimodal learning, multi-task learning, end-to-end learning, and embodiment for embodied visual language interaction. Finally, we discuss some current open issues and challenges and conclude our survey by giving possible future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默的骁发布了新的文献求助10
1秒前
1秒前
2秒前
李浩发布了新的文献求助10
3秒前
南拥夏栀完成签到,获得积分20
3秒前
Misty发布了新的文献求助10
5秒前
vincen91完成签到,获得积分10
6秒前
ww发布了新的文献求助10
7秒前
8秒前
goldNAN发布了新的文献求助10
9秒前
10秒前
12秒前
凉翊完成签到,获得积分10
12秒前
12秒前
粉色娇嫩发布了新的文献求助10
13秒前
SciGPT应助Erxat采纳,获得10
13秒前
cheezburger完成签到,获得积分10
14秒前
小欢完成签到,获得积分10
15秒前
15秒前
Jiancui发布了新的文献求助10
17秒前
haha发布了新的文献求助10
19秒前
领导范儿应助神勇的戒指采纳,获得10
21秒前
22秒前
超级小刺猬完成签到 ,获得积分10
23秒前
23秒前
zbearupz完成签到,获得积分10
24秒前
阳光发布了新的文献求助10
26秒前
28秒前
31秒前
丘比特应助Misty采纳,获得10
31秒前
Alandia完成签到 ,获得积分10
31秒前
HMONEY完成签到,获得积分10
32秒前
000发布了新的文献求助10
32秒前
34秒前
痞子毛发布了新的文献求助50
34秒前
37秒前
科研通AI5应助fagfagsf采纳,获得10
40秒前
冷漠的冰美式完成签到,获得积分10
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327450
关于积分的说明 10231409
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758822