Comparison of Deep Learning and Classical Machine Learning Algorithms to Predict Post-operative Outcomes for Anterior Cervical Discectomy and Fusion Procedures with State-of-the-art Performance

医学 颈椎前路椎间盘切除融合术 椎间盘切除术 机器学习 脊柱融合术 人工智能 算法 融合 外科 腰椎 计算机科学 颈椎 语言学 哲学
作者
Adrian Rodrigues,Ethan Schonfeld,Kunal Varshneya,Martin N. Stienen,Victor E. Staartjes,Michael C. Jin,Anand Veeravagu
出处
期刊:Spine [Lippincott Williams & Wilkins]
被引量:12
标识
DOI:10.1097/brs.0000000000004481
摘要

Study Design. Retrospective cohort. Objective. Due to Anterior cervical discectomy and fusion (ACDF) popularity, it is important to predict post-operative complications, unfavorable 90-day readmissions, and 2-year re-operations to improve surgical decision making, prognostication and planning. Summary of Background Data. Machine learning has been applied to predict post–operative complications for ACDF; however, studies were limited by sample size and model type. These studies achieved 0.70 AUC. Further approaches, not limited to ACDF, focused on specific complication types, and resulted in AUC between 0.70–0.76. Methods. The IBM MarketScan Commercial Claims and Encounters Database and Medicare Supplement were queried from 2007-2016 to identify adult patients who underwent an ACDF procedure (N=176,816). Traditional machine learning algorithms, logistic regression, support vector machines, were compared with deep neural networks to predict: 90-day post-operative complications, 90-day readmission, and 2-year reoperation. We further generated random deep learning model architectures and trained them on the 90-day complication task to approximate an upper bound. Lastly, using deep learning, we investigated the importance of each input variable for the prediction of 90-day post-operative complications in ACDF. Results. For the prediction of 90-day complication, 90-day readmission, and 2-year reoperation, the deep neural network-based models achieved area under the curve (AUC) of 0.832, 0.713, and 0.671. Logistic regression achieved AUCs of 0.820, 0.712, and 0.671. SVM approaches were significantly lower. The upper bound of deep learning performance was approximated as 0.832. Myelopathy, age, HIV, previous myocardial infarctions, obesity, and documentary weakness were found to be the strongest variable to predict 90-day post-operative complications. Conclusions. The deep neural network may be used to predict complications for clinical applications after multi-center validation. The results suggest limited added knowledge exists in interactions between the input variables used for this task. Future work should identify novel variables to increase predictive power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ming完成签到,获得积分10
2秒前
聪聪great完成签到,获得积分20
3秒前
超帅鸣凤完成签到,获得积分10
3秒前
4秒前
可可西里完成签到,获得积分10
5秒前
钮黎昕发布了新的文献求助10
5秒前
6秒前
天天快乐应助标致靖仇采纳,获得10
6秒前
7秒前
Elsa发布了新的文献求助10
7秒前
端庄的以寒完成签到,获得积分10
9秒前
卡卡西应助小杨同学采纳,获得10
9秒前
zzzz完成签到,获得积分10
10秒前
10秒前
15秒前
16秒前
wanci应助zjj采纳,获得10
16秒前
帅不屈服完成签到,获得积分10
16秒前
wendy完成签到,获得积分10
17秒前
mc发布了新的文献求助10
17秒前
凌夏关注了科研通微信公众号
18秒前
被风吹跑的yanyanyan完成签到,获得积分10
18秒前
yao完成签到,获得积分10
19秒前
资白玉发布了新的文献求助10
19秒前
木火发布了新的文献求助10
20秒前
21秒前
哒哒哒太阳完成签到,获得积分10
21秒前
SYLH应助岳小龙采纳,获得30
22秒前
曲终人散完成签到,获得积分10
22秒前
23秒前
23秒前
123完成签到,获得积分10
23秒前
小科完成签到,获得积分10
24秒前
24秒前
我是老大应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
神说应助科研通管家采纳,获得10
25秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820938
求助须知:如何正确求助?哪些是违规求助? 3363863
关于积分的说明 10425692
捐赠科研通 3082312
什么是DOI,文献DOI怎么找? 1695498
邀请新用户注册赠送积分活动 815147
科研通“疑难数据库(出版商)”最低求助积分说明 768982