A review of EEG and MEG for brainnetome research

脑磁图 脑电图 计算机科学 神经科学 大脑活动与冥想 理解力 认知 人工智能 模式识别(心理学) 心理学 程序设计语言
作者
Xin Zhang,Xu Lei,Ting Wu,Tianzi Jiang
出处
期刊:Cognitive Neurodynamics [Springer Science+Business Media]
卷期号:8 (2): 87-98 被引量:27
标识
DOI:10.1007/s11571-013-9274-9
摘要

The majority of brain activities are performed by functionally integrating separate regions of the brain. Therefore, the synchronous operation of the brain’s multiple regions or neuronal assemblies can be represented as a network with nodes that are interconnected by links. Because of the complexity of brain interactions and their varying effects at different levels of complexity, one of the corresponding authors of this paper recently proposed the brainnetome as a new –ome to explore and integrate the brain network at different scales. Because electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive and have outstanding temporal resolution and because they are the primary clinical techniques used to capture the dynamics of neuronal connections, they lend themselves to the analysis of the neural networks comprising the brainnetome. Because of EEG/MEG’s applicability to brainnetome analyses, the aim of this review is to identify the procedures that can be used to form a network using EEG/MEG data in sensor or source space and to promote EEG/MEG network analysis for either neuroscience or clinical applications. To accomplish this aim, we show the relationship of the brainnetome to brain networks at the macroscale and provide a systematic review of network construction using EEG and MEG. Some potential applications of the EEG/MEG brainnetome are to use newly developed methods to associate the properties of a brainnetome with indices of cognition or disease conditions. Associations based on EEG/MEG brainnetome analysis may improve the comprehension of the functioning of the brain in neuroscience research or the recognition of abnormal patterns in neurological disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可990210发布了新的文献求助10
3秒前
科研通AI6应助尊敬的便当采纳,获得10
4秒前
4秒前
小炮仗完成签到 ,获得积分10
5秒前
阿飘应助罗钦采纳,获得10
6秒前
科研通AI2S应助罗钦采纳,获得10
6秒前
科研通AI2S应助罗钦采纳,获得10
6秒前
戏子应助罗钦采纳,获得10
6秒前
思辨233发布了新的文献求助10
6秒前
7秒前
弄好不啦发布了新的文献求助10
9秒前
ding应助科研小狗采纳,获得10
10秒前
10秒前
121313完成签到,获得积分10
10秒前
TobyGarfielD发布了新的文献求助10
12秒前
13秒前
烟花应助小呆呆采纳,获得10
13秒前
爆炸boom完成签到 ,获得积分10
13秒前
Akim应助腻腻采纳,获得10
14秒前
15秒前
Ava应助弄好不啦采纳,获得10
15秒前
奋斗的萝发布了新的文献求助10
17秒前
17秒前
19秒前
Future完成签到 ,获得积分10
22秒前
23秒前
悦悦发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
Hello应助花开富贵采纳,获得10
24秒前
搜集达人应助zj采纳,获得10
25秒前
26秒前
眯眯眼的山柳完成签到 ,获得积分10
29秒前
29秒前
30秒前
张涛发布了新的文献求助10
31秒前
32秒前
alexysw发布了新的文献求助10
34秒前
NOAH发布了新的文献求助30
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248424
求助须知:如何正确求助?哪些是违规求助? 3781617
关于积分的说明 11872456
捐赠科研通 3434287
什么是DOI,文献DOI怎么找? 1884846
邀请新用户注册赠送积分活动 936418
科研通“疑难数据库(出版商)”最低求助积分说明 842350