Neural network prediction of thermophilic (65°C) sulfidogenic fluidized‐bed reactor performance for the treatment of metal‐containing wastewater

碱度 硫酸盐 废水 化学 流出物 流化床 生物反应器 硫化物 污水处理 制浆造纸工业 挥发性悬浮物 核化学 色谱法 活性污泥 环境工程 有机化学 环境科学 工程类
作者
Erkan Şahinkaya,Bestami Özkaya,Anna H. Kaksonen,Jaakko A. Puhakka
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:97 (4): 780-787 被引量:21
标识
DOI:10.1002/bit.21282
摘要

Abstract The performance of a fluidized‐bed reactor (FBR) based sulfate reducing bioprocess was predicted using artificial neural network (ANN). The FBR was operated at high (65°C) temperature and it was fed with iron (40–90 mg/L) and sulfate (1,000–1,500 mg/L) containing acidic (pH = 3.5–6) synthetic wastewater. Ethanol was supplemented as carbon and electron source for sulfate reducing bacteria (SRB). The wastewater pH of 4.3–4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 ± 0.8. The oxidation of acetate is the rate‐limiting step in the sulfidogenic ethanol oxidation by thermophilic SRB, which resulted in acetate accumulation. Sulfate reduction and acetate oxidation rates showed variation depending on the operational conditions with the maximum rates of 1 g/L/d (0.2 g/g volatile solids (VS)/d) and 0.3 g/L/d (0.06 g/g VS/d), respectively. This study presents an ANN model predicting the performance of the reactor and determining the optimal architecture of this model; such as best back‐propagation (BP) algorithm and neuron numbers. The Levenberg–Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 20. The developed ANN model predicted acetate ( R = 0.91), sulfate ( R = 0.95), sulfide ( R = 0.97), and alkalinity ( R = 0.94) in the FBR effluent. Hence, the ANN based model can be used to predict the FBR performance, to control the operational conditions for improved process performance. Biotechnol. Bioeng. 2007;97: 780–787. © 2006 Wiley Periodicals, Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
youjun发布了新的文献求助10
1秒前
1秒前
危机的绯完成签到,获得积分10
1秒前
江生完成签到,获得积分10
2秒前
蓝天发布了新的文献求助10
4秒前
欣喜的远侵完成签到,获得积分10
4秒前
欣慰沅发布了新的文献求助30
4秒前
斯文败类应助长柏采纳,获得10
5秒前
5秒前
5秒前
pb发布了新的文献求助10
6秒前
7秒前
8秒前
求求科研完成签到 ,获得积分10
8秒前
轨迹应助张莜莜采纳,获得20
9秒前
9秒前
10秒前
10秒前
light发布了新的文献求助10
11秒前
炙热萝完成签到,获得积分10
13秒前
13秒前
baobeikk完成签到,获得积分10
14秒前
李健应助嗯很好采纳,获得10
14秒前
Rjy完成签到,获得积分10
15秒前
15秒前
a小q发布了新的文献求助10
16秒前
浮游应助美味的冷面采纳,获得10
19秒前
艾斯完成签到 ,获得积分10
19秒前
CodeCraft应助怕黑捕采纳,获得10
20秒前
lulu发布了新的文献求助30
21秒前
量子星尘发布了新的文献求助10
22秒前
思源应助胖豆采纳,获得10
22秒前
新八完成签到,获得积分10
23秒前
Hhhhhhu完成签到,获得积分10
23秒前
23秒前
asdfzxcv应助朴素剑心采纳,获得10
23秒前
科研通AI6应助张莜莜采纳,获得10
24秒前
24秒前
a小q完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909