A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data

每年落叶的 激光雷达 点云 树(集合论) 分割 分水岭 计算机科学 遥感 精确性和召回率 测距 算法 数学 人工智能 地理 计算机视觉 生态学 生物 数学分析 电信
作者
Xingcheng Lu,Qinghua Guo,Wenkai Li,J. Flanagan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:94: 1-12 被引量:144
标识
DOI:10.1016/j.isprsjprs.2014.03.014
摘要

Light Detection and Ranging (Lidar) can generate three-dimensional (3D) point cloud which can be used to characterize horizontal and vertical forest structure, so it has become a popular tool for forest research. Recently, various methods based on top-down scheme have been developed to segment individual tree from lidar data. Some of these methods, such as the one developed by Li et al. (2012), can obtain the accuracy up to 90% when applied in coniferous forests. However, the accuracy will decrease when they are applied in deciduous forest because the interlacing tree branches can increase the difficulty to determine the tree top. In order to solve challenges of the tree segmentation in deciduous forests, we develop a new bottom-up method based on the intensity and 3D structure of leaf-off lidar point cloud data in this study. We applied our algorithm to segment trees in a forest at the Shavers Creek Watershed in Pennsylvania. Three indices were used to assess the accuracy of our method: recall, precision and F-score. The results show that the algorithm can detect 84% of the tree (recall), 97% of the segmented trees are correct (precision) and the overall F-score is 90%. The result implies that our method has good potential for segmenting individual trees in deciduous broadleaf forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RR发布了新的文献求助10
2秒前
zuotm发布了新的文献求助10
2秒前
2秒前
CodeCraft应助David采纳,获得10
4秒前
深情安青应助健壮的冰夏采纳,获得10
7秒前
所所应助学习学习学习采纳,获得10
9秒前
郭宇发布了新的文献求助10
12秒前
大模型应助嘻嘻不哈哈采纳,获得10
12秒前
12秒前
13秒前
14秒前
殷勤的可兰完成签到 ,获得积分10
17秒前
18秒前
魏伯安发布了新的文献求助10
18秒前
19秒前
19秒前
研友_nEoBP8发布了新的文献求助30
20秒前
21秒前
Jackie完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
Will完成签到 ,获得积分10
23秒前
景代丝发布了新的文献求助10
24秒前
Chris完成签到,获得积分10
24秒前
24秒前
ZYQ发布了新的文献求助10
25秒前
wpk发布了新的文献求助10
25秒前
归尘发布了新的文献求助10
25秒前
JOJO完成签到,获得积分10
26秒前
竹海涟漪完成签到,获得积分10
27秒前
魏伯安完成签到,获得积分10
29秒前
研友_nEoBP8完成签到,获得积分10
29秒前
29秒前
科研通AI5应助芭娜55采纳,获得10
30秒前
30秒前
31秒前
simon完成签到,获得积分10
31秒前
今后应助高挑的宛海采纳,获得10
31秒前
NexusExplorer应助寒时采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354951
关于积分的说明 10373613
捐赠科研通 3071505
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811324
科研通“疑难数据库(出版商)”最低求助积分说明 766616