Use of Bayesian Decision Analysis to Minimize Harm in Patient-Centered Randomized Clinical Trials in Oncology

医学 随机对照试验 无效假设 临床试验 危害 样本量测定 贝叶斯概率 肿瘤科 内科学 统计 政治学 数学 法学
作者
Vahid Montazerhodjat,Shomesh E. Chaudhuri,Daniel J. Sargent,Andrew W. Lo
出处
期刊:JAMA Oncology [American Medical Association]
卷期号:3 (9): e170123-e170123 被引量:34
标识
DOI:10.1001/jamaoncol.2017.0123
摘要

Randomized clinical trials (RCTs) currently apply the same statistical threshold of alpha = 2.5% for controlling for false-positive results or type 1 error, regardless of the burden of disease or patient preferences. Is there an objective and systematic framework for designing RCTs that incorporates these considerations on a case-by-case basis?To apply Bayesian decision analysis (BDA) to cancer therapeutics to choose an alpha and sample size that minimize the potential harm to current and future patients under both null and alternative hypotheses.We used the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) database and data from the 10 clinical trials of the Alliance for Clinical Trials in Oncology.The NCI SEER database was used because it is the most comprehensive cancer database in the United States. The Alliance trial data was used owing to the quality and breadth of data, and because of the expertise in these trials of one of us (D.J.S.).The NCI SEER and Alliance data have already been thoroughly vetted. Computations were replicated independently by 2 coauthors and reviewed by all coauthors.Our prior hypothesis was that an alpha of 2.5% would not minimize the overall expected harm to current and future patients for the most deadly cancers, and that a less conservative alpha may be necessary. Our primary study outcomes involve measuring the potential harm to patients under both null and alternative hypotheses using NCI and Alliance data, and then computing BDA-optimal type 1 error rates and sample sizes for oncology RCTs.We computed BDA-optimal parameters for the 23 most common cancer sites using NCI data, and for the 10 Alliance clinical trials. For RCTs involving therapies for cancers with short survival times, no existing treatments, and low prevalence, the BDA-optimal type 1 error rates were much higher than the traditional 2.5%. For cancers with longer survival times, existing treatments, and high prevalence, the corresponding BDA-optimal error rates were much lower, in some cases even lower than 2.5%.Bayesian decision analysis is a systematic, objective, transparent, and repeatable process for deciding the outcomes of RCTs that explicitly incorporates burden of disease and patient preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
老实冰薇发布了新的文献求助10
2秒前
谢青发布了新的文献求助10
2秒前
牛马发布了新的文献求助10
3秒前
minmi完成签到,获得积分10
5秒前
好家伙发布了新的文献求助50
6秒前
7秒前
思源应助乐观的西装采纳,获得10
7秒前
别看我只是一只羊完成签到,获得积分10
7秒前
辣辣辣辣辣辣完成签到 ,获得积分10
8秒前
9秒前
lsl发布了新的文献求助200
11秒前
共享精神应助老实冰薇采纳,获得10
12秒前
13秒前
谢青完成签到,获得积分10
13秒前
Dddd发布了新的文献求助10
13秒前
活性炭完成签到,获得积分10
13秒前
科研通AI2S应助忧虑的曲奇采纳,获得10
14秒前
英俊的铭应助忧虑的曲奇采纳,获得10
14秒前
WDW发布了新的文献求助10
14秒前
16秒前
香蕉觅云应助可乐采纳,获得10
19秒前
19秒前
在水一方应助读书的时候采纳,获得10
19秒前
Miranda完成签到,获得积分10
22秒前
白芷应助科研人采纳,获得10
22秒前
cnmkyt发布了新的文献求助10
24秒前
yar应助嘻嘻哈哈采纳,获得10
24秒前
24秒前
25秒前
26秒前
阿尔治完成签到,获得积分10
27秒前
无辜忆寒完成签到,获得积分10
27秒前
呼呼哈哈完成签到,获得积分10
29秒前
Hoooo...发布了新的文献求助10
29秒前
聂龙誉发布了新的文献求助10
30秒前
30秒前
sjl发布了新的文献求助30
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097916
求助须知:如何正确求助?哪些是违规求助? 3635687
关于积分的说明 11523992
捐赠科研通 3345739
什么是DOI,文献DOI怎么找? 1838931
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823640