The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis

虚拟现实 增强现实 培训(气象学) 任务(项目管理) 多样性(控制论) 计算机科学 荟萃分析 培训转移 人机交互 医学 人工智能 知识管理 工程类 物理 系统工程 气象学 内科学
作者
Alexandra D. Kaplan,Jessica Cruit,Mica R. Endsley,Suzanne M. Beers,Ben D. Sawyer,Peter A. Hancock
出处
期刊:Human Factors [SAGE Publishing]
卷期号:63 (4): 706-726 被引量:397
标识
DOI:10.1177/0018720820904229
摘要

Objective The objective of this meta-analysis is to explore the presently available, empirical findings on transfer of training from virtual (VR), augmented (AR), and mixed reality (MR) and determine whether such extended reality (XR)-based training is as effective as traditional training methods. Background MR, VR, and AR have already been used as training tools in a variety of domains. However, the question of whether or not these manipulations are effective for training has not been quantitatively and conclusively answered. Evidence shows that, while extended realities can often be time-saving and cost-saving training mechanisms, their efficacy as training tools has been debated. Method The current body of literature was examined and all qualifying articles pertaining to transfer of training from MR, VR, and AR were included in the meta-analysis. Effect sizes were calculated to determine the effects that XR-based factors, trainee-based factors, and task-based factors had on performance measures after XR-based training. Results Results showed that training in XR does not express a different outcome than training in a nonsimulated, control environment. It is equally effective at enhancing performance. Conclusion Across numerous studies in multiple fields, extended realities are as effective of a training mechanism as the commonly accepted methods. The value of XR then lies in providing training in circumstances, which exclude traditional methods, such as situations when danger or cost may make traditional training impossible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lynn完成签到 ,获得积分10
刚刚
章鱼发布了新的文献求助10
刚刚
亚婷儿完成签到,获得积分10
2秒前
4秒前
火星上的灵竹完成签到,获得积分10
6秒前
一减完成签到 ,获得积分10
7秒前
GreenDuane完成签到 ,获得积分0
9秒前
Hxq完成签到 ,获得积分10
9秒前
chen发布了新的文献求助10
10秒前
11秒前
DrW完成签到,获得积分10
11秒前
冬瓜熊完成签到,获得积分10
12秒前
点凌蝶完成签到,获得积分10
13秒前
一晃儿完成签到,获得积分10
14秒前
忽忽发布了新的文献求助10
16秒前
17秒前
小卷粉发布了新的文献求助20
18秒前
养猪人完成签到,获得积分10
18秒前
香蕉觅云应助upsoar采纳,获得10
19秒前
Diana驳回了iNk应助
21秒前
合适的自行车完成签到,获得积分10
22秒前
lilylian完成签到,获得积分10
22秒前
肉酱完成签到 ,获得积分10
22秒前
机灵橘子完成签到,获得积分10
25秒前
27秒前
28秒前
为你博弈完成签到,获得积分10
29秒前
青云完成签到,获得积分10
30秒前
Dromaeotroodon完成签到,获得积分10
31秒前
upsoar发布了新的文献求助10
32秒前
欣喜沛芹完成签到,获得积分10
33秒前
35秒前
yifei完成签到,获得积分10
36秒前
月光族完成签到,获得积分10
36秒前
36秒前
嘎嘎慢点走完成签到 ,获得积分10
37秒前
gao完成签到 ,获得积分10
38秒前
zhouleiwang完成签到,获得积分10
38秒前
小康学弟完成签到 ,获得积分10
39秒前
文献发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780938
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227091
捐赠科研通 3041639
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734