Robust Detection of Bearing Early Fault Based on Deep Transfer Learning

方位(导航) 人工智能 深度学习 计算机科学 故障检测与隔离 断层(地质) 学习迁移 噪音(视频) 模式识别(心理学) 可靠性(半导体) 降噪 代表(政治) 特征(语言学) 功率(物理) 执行机构 政治 量子力学 政治学 哲学 地震学 地质学 法学 语言学 物理 图像(数学)
作者
Wentao Mao,Di Zhang,Siyu Tian,Jiamei Tang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (2): 323-323 被引量:14
标识
DOI:10.3390/electronics9020323
摘要

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lemon完成签到 ,获得积分10
1秒前
JamesPei应助邹秋雨采纳,获得10
1秒前
阿庭发布了新的文献求助10
1秒前
2秒前
2秒前
chen发布了新的文献求助10
2秒前
2秒前
Owen应助英勇的电话采纳,获得10
3秒前
3秒前
3秒前
科研通AI2S应助zhao采纳,获得10
3秒前
lily发布了新的文献求助10
4秒前
淡淡梨愁完成签到,获得积分10
5秒前
Liooo完成签到 ,获得积分10
5秒前
阿达发布了新的文献求助10
6秒前
长心完成签到,获得积分10
7秒前
choshuenco完成签到,获得积分10
7秒前
ZM发布了新的文献求助10
7秒前
8秒前
9秒前
昏睡的鑫磊完成签到,获得积分10
11秒前
CodeCraft应助Ruiruirui采纳,获得10
11秒前
11秒前
所所应助细腻的谷秋采纳,获得10
11秒前
12秒前
科研通AI2S应助BQ采纳,获得10
13秒前
13秒前
坦率的怡发布了新的文献求助30
14秒前
14秒前
共享精神应助阿鑫采纳,获得10
15秒前
邹秋雨发布了新的文献求助10
15秒前
俏皮的宛凝完成签到,获得积分10
17秒前
蓝豆子发布了新的文献求助10
17秒前
19秒前
19秒前
彭于晏应助大气沅采纳,获得10
19秒前
xiaoxioayixi发布了新的文献求助10
20秒前
科研通AI5应助风中的安珊采纳,获得10
21秒前
21秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795130
求助须知:如何正确求助?哪些是违规求助? 3340052
关于积分的说明 10298578
捐赠科研通 3056583
什么是DOI,文献DOI怎么找? 1677098
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391