Thin MobileNet: An Enhanced MobileNet Architecture

计算机科学 计算 卷积神经网络 算法 并行计算 人工智能
作者
Debjyoti Sinha,Mohamed El‐Sharkawy
标识
DOI:10.1109/uemcon47517.2019.8993089
摘要

In the field of computer, mobile and embedded vision Convolutional Neural Networks (CNNs) are deep learning models which play a significant role in object detection and recognition. MobileNet is one such efficient, light-weighted model for this purpose, but there are many constraints or challenges for the hardware deployment of such architectures into resource-constrained micro-controller units due to limited memory, energy and power. Also, the overall accuracy of the model generally decreases when the size and the total number of parameters are reduced by any method such as pruning or deep compression. The paper proposes three hybrid MobileNet architectures which has improved accuracy along-with reduced size, lesser number of layers, lower average computation time and very less overfitting as compared to the baseline MobileNet v1. The reason behind developing these models is to have a variant of the existing MobileNet model which will be easily deployable in memory constrained MCUs. We name the model having the smallest size (9.9 MB) as Thin MobileNet. We achieve an increase in accuracy by replacing the standard non-linear activation function ReLU with Drop Activation and introducing Random erasing regularization technique in place of drop out. The model size is reduced by using Separable Convolutions instead of the Depthwise separable convolutions used in the baseline MobileNet. Later on, we make our model shallow by eliminating a few unnecessary layers without a drop in the accuracy. The experimental results are based on training the model on CIFAR-10 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深夜emo哥完成签到,获得积分20
刚刚
qise应助好好好采纳,获得10
刚刚
糖宝完成签到,获得积分10
刚刚
刚刚
肝不动的牛马完成签到,获得积分10
1秒前
老王完成签到,获得积分10
1秒前
感动水杯发布了新的文献求助10
1秒前
陶醉的小海豚完成签到,获得积分10
1秒前
1秒前
1秒前
ysy完成签到,获得积分10
1秒前
dra7vu发布了新的文献求助10
1秒前
工位瘤子完成签到,获得积分10
1秒前
安详凡松发布了新的文献求助10
1秒前
丛雨发布了新的文献求助10
1秒前
2秒前
Hannah完成签到,获得积分10
2秒前
无趣的研究生完成签到,获得积分10
2秒前
黑大帅完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
lgx发布了新的文献求助10
3秒前
Y奥发布了新的文献求助30
3秒前
和谐的灯泡完成签到,获得积分10
3秒前
Devon发布了新的文献求助20
4秒前
Wunier61发布了新的文献求助10
4秒前
4秒前
银角大王完成签到,获得积分10
4秒前
王宇发布了新的文献求助10
4秒前
5秒前
bhappy21完成签到,获得积分10
5秒前
chenqiumu应助等待的盼旋采纳,获得30
5秒前
5秒前
胡图图啦啦完成签到,获得积分10
5秒前
5秒前
今后应助慕迎蕾采纳,获得10
5秒前
细心的小熊猫完成签到,获得积分20
5秒前
飞快的书桃完成签到,获得积分10
6秒前
欣喜雅香发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489302
求助须知:如何正确求助?哪些是违规求助? 4588013
关于积分的说明 14417128
捐赠科研通 4519737
什么是DOI,文献DOI怎么找? 2476385
邀请新用户注册赠送积分活动 1461857
关于科研通互助平台的介绍 1435004