Data Mining Identifies Six Proteins that Can Act as Prognostic Markers for Head and Neck Squamous Cell Carcinoma

基底细胞 头颈部癌 癌症研究 病理 头颈部
作者
Zeng-Hong Wu,Yun-Tang,Qing Cheng
出处
期刊:Cell Transplantation [SAGE Publishing]
卷期号:29: 963689720929308- 被引量:2
标识
DOI:10.1177/0963689720929308
摘要

Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor of the upper aerodigestive tract affecting the oral cavity, lips, paranasal sinuses, larynx, and nasopharynx. Proteogenomics combines proteomics and genomics and employs mass spectrometry and high-throughput sequencing technologies to identify novel peptides. The aim of this study was to identify potential protein biomarkers for clinical treatment of HNSCC. To achieve this, we utilized two sets of data, one on proteins from The Cancer Proteome Atlas (TCPA) and the other on gene expression from The Cancer Genome Atlas (TCGA) database, to evaluate dysfunctional proteogenomics microenvironment. Univariate Cox regression analysis was performed to examine the relationship between protein signatures and prognosis. A total of 19 proteins were significantly associated with overall survival (OS) of patients, of which E2F transcription factor 1 (E2F1; HR = 4.557, 95% CI = 1.810 to 11.469) and enhancer of zeste homolog 2 (EZH2; HR = 0.430, 95% CI = 0.187 to 0.984) were the most differentially expressed between patients with longer and shorter OS, respectively. Furthermore, multivariate Cox regression analysis on six proteins (ERALPHA, HER3, BRAF, P27, RAPTOR, and E2F1) was performed to build the prognostic model. The receiver operating characteristic curves were used to determine whether the expression pattern of survival-related proteins could provide an early prediction of the occurrence of HNSCC. Herein, we found an AUC of 0.720. Based on an online database, we identified novel protein markers for the prognosis of HNSCC. The findings of the present study may provide new insights into the development of new and reliable tools for precise cancer intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野椒搞科研完成签到,获得积分10
刚刚
1秒前
陶赖赖发布了新的文献求助10
3秒前
felicity完成签到 ,获得积分10
4秒前
科研通AI5应助野椒搞科研采纳,获得10
4秒前
刘伟发布了新的文献求助10
4秒前
小天发布了新的文献求助10
5秒前
12秒前
星辰大海应助无心的无施采纳,获得10
13秒前
刺花以夏完成签到 ,获得积分10
14秒前
斯文败类应助kai采纳,获得10
15秒前
无花果应助dadad采纳,获得10
15秒前
科目三应助xx采纳,获得10
17秒前
bkagyin应助LIJINGGE采纳,获得10
19秒前
无花果应助LIJINGGE采纳,获得10
19秒前
慕青应助LIJINGGE采纳,获得10
19秒前
所所应助LIJINGGE采纳,获得10
19秒前
Jayran完成签到 ,获得积分10
19秒前
无花果应助动人的老黑采纳,获得10
22秒前
24秒前
pluto应助LIJINGGE采纳,获得10
25秒前
慕青应助LIJINGGE采纳,获得10
25秒前
CipherSage应助LIJINGGE采纳,获得10
25秒前
酷波er应助LIJINGGE采纳,获得10
25秒前
FashionBoy应助LIJINGGE采纳,获得10
25秒前
搜集达人应助LIJINGGE采纳,获得10
25秒前
Ava应助LIJINGGE采纳,获得10
25秒前
桐桐应助LIJINGGE采纳,获得10
25秒前
共享精神应助LIJINGGE采纳,获得10
25秒前
CodeCraft应助LIJINGGE采纳,获得10
25秒前
ygr完成签到,获得积分0
27秒前
28秒前
李爱国应助study采纳,获得10
28秒前
32秒前
沙珠完成签到,获得积分10
33秒前
33秒前
可爱的函函应助甜美无剑采纳,获得10
34秒前
八点必起完成签到,获得积分10
35秒前
标致大开完成签到 ,获得积分10
36秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415