A survey on ensemble learning

计算机科学 领域(数学) 强化学习 集成学习 多样性(控制论) 背景(考古学) 知识抽取 构造(python库) 基于实例的学习 人工智能 主动学习(机器学习) 机器学习 生物 古生物学 程序设计语言 纯数学 数学
作者
Dong Xibin,Zhiwen Yu,Wenming Cao,Yifan Shi,Qianli Ma
出处
期刊:Frontiers of Computer Science [Higher Education Press]
卷期号:14 (2): 241-258 被引量:1338
标识
DOI:10.1007/s11704-019-8208-z
摘要

Despite significant successes achieved in knowledge discovery, traditional machine learning methods may fail to obtain satisfactory performances when dealing with complex data, such as imbalanced, high-dimensional, noisy data, etc. The reason behind is that it is difficult for these methods to capture multiple characteristics and underlying structure of data. In this context, it becomes an important topic in the data mining field that how to effectively construct an efficient knowledge discovery and mining model. Ensemble learning, as one research hot spot, aims to integrate data fusion, data modeling, and data mining into a unified framework. Specifically, ensemble learning firstly extracts a set of features with a variety of transformations. Based on these learned features, multiple learning algorithms are utilized to produce weak predictive results. Finally, ensemble learning fuses the informative knowledge from the above results obtained to achieve knowledge discovery and better predictive performance via voting schemes in an adaptive way. In this paper, we review the research progress of the mainstream approaches of ensemble learning and classify them based on different characteristics. In addition, we present challenges and possible research directions for each mainstream approach of ensemble learning, and we also give an extra introduction for the combination of ensemble learning with other machine learning hot spots such as deep learning, reinforcement learning, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
li发布了新的文献求助10
1秒前
brd发布了新的文献求助10
1秒前
1秒前
1秒前
chengcheng发布了新的文献求助10
1秒前
1秒前
平淡雪枫完成签到 ,获得积分10
2秒前
大成子发布了新的文献求助10
3秒前
义气碧菡发布了新的文献求助10
4秒前
Ava应助GQ采纳,获得10
4秒前
Clovis33发布了新的文献求助10
4秒前
rougelike完成签到,获得积分10
5秒前
5秒前
why关闭了why文献求助
5秒前
希望天下0贩的0应助cimy采纳,获得10
5秒前
科研通AI5应助gpa采纳,获得10
5秒前
Nico_Ding发布了新的文献求助10
5秒前
沉静念烟发布了新的文献求助10
6秒前
十三应助baobao采纳,获得10
6秒前
无忌发布了新的文献求助10
6秒前
无敌暴龙学神完成签到,获得积分10
7秒前
7秒前
东风完成签到,获得积分10
7秒前
晚风完成签到,获得积分10
7秒前
常常完成签到,获得积分10
7秒前
8秒前
Eman完成签到,获得积分10
8秒前
欣喜的香彤完成签到,获得积分10
8秒前
科研通AI5应助和花花采纳,获得10
8秒前
阿南发布了新的文献求助10
8秒前
iebdus123发布了新的文献求助10
9秒前
坚强的草履虫完成签到,获得积分10
9秒前
缥缈纲应助科研通管家采纳,获得10
10秒前
10秒前
机灵柚子应助科研通管家采纳,获得20
10秒前
打打应助esther816采纳,获得10
10秒前
科目三应助科研通管家采纳,获得30
10秒前
郭二发布了新的文献求助10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792984
求助须知:如何正确求助?哪些是违规求助? 3337735
关于积分的说明 10286331
捐赠科研通 3054258
什么是DOI,文献DOI怎么找? 1675917
邀请新用户注册赠送积分活动 803905
科研通“疑难数据库(出版商)”最低求助积分说明 761598