Identifying soil provenance based on portable X-ray fluorescence measurements using similarity and inverse-mapping approaches – A case in the Lower Hunter Valley, Australia

出处 相似性(几何) 主成分分析 土工试验 样品(材料) 环境科学 数字土壤制图 排序 土壤水分 遥感 地质学 土壤科学 土壤分类 计算机科学 数学 统计 化学 人工智能 图像(数学) 色谱法 岩石学
作者
Yuxin Ma,Budiman Minasny,Alex B. McBratney
出处
期刊:Geoderma Regional [Elsevier BV]
卷期号:25: e00368-e00368 被引量:8
标识
DOI:10.1016/j.geodrs.2021.e00368
摘要

Abstract There is a growing interest in the use of soil composition as a form of evidence in food provenance, forensics, biosecurity, and archaeology. Given a soil sample of unknown origin, we should like to know the likely geographical source of that material. In this study, we investigated whether data provided from a rapid and non-destructive sensor can be used to identify the provenance of a soil sample. A portable X-ray fluorescence (pXRF) spectrometer was used to measure the elemental abundance of 0–10 cm soil samples from a part of the Lower Hunter Valley, NSW, Australia (an area of 328 km2). Three methods, namely, two similarity methods (points of similarity and regions of similarity) based on distances to the unlocated specimen in the principal component (PC) space of the geochemical data, and an artificial neural network (ANN) method, effectively an inverse digital soil mapping (DSM) approach, which predicts location from the set of geochemical variables, were tested to determine the provenance of soil samples. In the PC approach, digital soil maps of the PC scores of eight major elements and two elemental ratios were created. The locations predicted by the PC approach seemed to follow the pattern of topography. In the ANN approach, the geographical coordinates (Eastings and Northings) of a sample were predicted simultaneously using the elemental concentrations and ratios. Using maps of elemental concentration classes (regions of similarity based on PC) provided a mean RMSE of 8.6 km for the 147 validation samples. The different effects of identification of geographical locations were compared using a 95% spatial confidence interval of prediction on a validation dataset. The points of similarity based on PC approach showed that the predicted search areas can capture 59% of the true locations of the test data. Meanwhile, the ANN approach can capture 69% of the true locations of the data. The mean RMSE for ANN prediction (2.8 km) was smaller than that for points of similarity prediction (4.3 km). Both soil provenancing approaches are potentially useful in identifying geographical areas of origin or similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cc0803完成签到,获得积分10
2秒前
MXJ发布了新的文献求助10
6秒前
科研通AI5应助笔芯采纳,获得10
7秒前
一禅完成签到 ,获得积分10
7秒前
8秒前
慌糖完成签到,获得积分10
8秒前
杨Chinese完成签到 ,获得积分10
12秒前
suibiao发布了新的文献求助10
12秒前
13秒前
小鹿发布了新的文献求助10
14秒前
17秒前
~~发布了新的文献求助10
18秒前
19秒前
Felix发布了新的文献求助20
21秒前
殷勤的弼发布了新的文献求助50
23秒前
cc0803发布了新的文献求助10
25秒前
yuan完成签到,获得积分10
25秒前
香蕉觅云应助CFJ采纳,获得10
26秒前
深情安青应助小鹿采纳,获得10
26秒前
27秒前
传奇3应助YC采纳,获得10
30秒前
31秒前
京阿尼发布了新的文献求助10
32秒前
虞智闳发布了新的文献求助10
34秒前
NSS完成签到 ,获得积分10
34秒前
香辣鸡腿堡完成签到,获得积分10
35秒前
37秒前
38秒前
wanci应助善良的剑通采纳,获得10
42秒前
Bryn发布了新的文献求助10
43秒前
鸟头完成签到 ,获得积分20
43秒前
43秒前
科研通AI5应助殷勤的弼采纳,获得10
44秒前
豆浆来点蒜泥完成签到,获得积分10
45秒前
领导范儿应助任生平采纳,获得10
46秒前
健康的半仙完成签到,获得积分10
47秒前
48秒前
lu发布了新的文献求助10
48秒前
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846816
求助须知:如何正确求助?哪些是违规求助? 3389328
关于积分的说明 10556764
捐赠科研通 3109676
什么是DOI,文献DOI怎么找? 1713868
邀请新用户注册赠送积分活动 825020
科研通“疑难数据库(出版商)”最低求助积分说明 775153