Canonical EEG Microstate Dynamic Properties and Their Associations with fMRI Signals at Resting Brain

脑电图 同步脑电与功能磁共振 地方政府 功能磁共振成像 心理学 大脑活动与冥想 静息状态功能磁共振成像 血氧水平依赖性 神经科学 模式识别(心理学) 大脑定位 神经影像学 人工智能 计算机科学 认知心理学
作者
Obada Al Zoubi,Masaya Misaki,Aki Tsuchiyagaito,Ahmad Mayeli,Vadim Zotev,Hazem H. Refai,Martin P. Paulus,Jerzy Bodurka
标识
DOI:10.1101/2020.08.14.251066
摘要

Abstract Electroencephalography microstates (EEG-ms) capture and reflect the spatio-temporal neural dynamics of the brain. A growing literature is employing EEG-ms-based analyses to study various mental illnesses and to evaluate brain mechanisms implicated in cognitive and emotional processing. The spatial and functional interpretation of the EEG-ms is still being investigated. Previous works studied the association of EEG-ms time courses with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal and suggested an association between EEG-ms and resting-state networks (RSNs). However, the distinctive association between EEG-ms temporal dynamics and brain neuronal activities is still not clear, despite the assumption that EEG-ms are an electrophysiological representation of RSNs activity. Recent works suggest a role for brain spontaneous EEG rhythms in contributing to and modulating canonical EEG-ms topographies and determining their classes (coined A through D) and metrics. This work simultaneously utilized EEG and fMRI to understand the EEG-ms and their properties further. We adopted the canonical EEG-ms analysis to extract three types of regressors for EEG-informed fMRI analyses: EEG-ms direct time courses, temporal activity per microstate, and pairwise temporal transitions among microstates (the latter two coined activity regressors). After convolving EEG-ms regressors with a hemodynamic response function, a generalized linear model whole-brain voxel-wise analysis was conducted to associate EEG-ms regressors with fMRI signals. The direct time course regressors replicated prior findings of the association between the fMRI signal and EEG-ms time courses but to a smaller extent. Notably, EEG-ms activity regressors were mostly anticorrelated with fMRI, including brain regions in the somatomotor, visual, dorsal attention, and ventral attention fMRI networks with no significant overlap for default mode, limbic or frontoparietal networks. A similar pattern emerged in using the transition regressors among microstates but not in self-transitions. The relatively short duration of each EEG-ms and the significant association of EEG-ms activity regressors with fMRI signals suggest that EEG-ms manifests successive transition from one brain functional state to another rather than being associated with specific brain functional state or RSN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助悦耳的盼芙采纳,获得10
1秒前
啊哈发布了新的文献求助10
1秒前
dongyi完成签到,获得积分10
5秒前
qqwrv发布了新的文献求助10
8秒前
8秒前
科研乞丐应助清爽语柳采纳,获得20
8秒前
努力考研完成签到,获得积分10
10秒前
10秒前
慕青应助巨大的小侠采纳,获得10
11秒前
东风完成签到,获得积分10
11秒前
wonder发布了新的文献求助10
12秒前
www发布了新的文献求助10
12秒前
13秒前
14秒前
zd完成签到,获得积分10
14秒前
wuhu发布了新的文献求助10
15秒前
zyzraylene发布了新的文献求助10
17秒前
蔺天宇完成签到,获得积分10
18秒前
18秒前
20秒前
丘比特应助可爱的鬼神采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
111咩咩发布了新的文献求助30
23秒前
蓝色花生豆完成签到,获得积分10
23秒前
24秒前
24秒前
liz发布了新的文献求助10
27秒前
28秒前
Suttier发布了新的文献求助10
30秒前
31秒前
long完成签到,获得积分20
32秒前
酷波er应助洁净海莲采纳,获得10
34秒前
long发布了新的文献求助20
35秒前
xffff完成签到 ,获得积分10
36秒前
谨慎的雁山完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
39秒前
爱云发布了新的文献求助10
39秒前
40秒前
祁尒完成签到,获得积分10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215190
求助须知:如何正确求助?哪些是违规求助? 3749557
关于积分的说明 11794458
捐赠科研通 3415539
什么是DOI,文献DOI怎么找? 1874452
邀请新用户注册赠送积分活动 928521
科研通“疑难数据库(出版商)”最低求助积分说明 837677