木质素
甲醛
纤维板
马来酸酐
催化作用
材料科学
脲醛
胶粘剂
耐水性
固化(化学)
有机化学
化学工程
马来酸
高分子化学
化学
复合材料
聚合物
共聚物
工程类
图层(电子)
作者
Shishuai Gao,Yupeng Liu,Chunpeng Wang,Fuxiang Chu,Feng Xu,Daihui Zhang
出处
期刊:Polymers
[MDPI AG]
日期:2020-01-09
卷期号:12 (1): 175-175
被引量:43
标识
DOI:10.3390/polym12010175
摘要
In this study, a lignin-based polyacid catalyst was synthesized via two steps to enhance water resistance of urea–formaldehyde (UF) resins. The first steps involved a hydroxymethylation reaction to increase the hydroxyl content in lignin. Then, hydroxymethylated lignins were reacted with maleic anhydride to form maleated lignin-based polyacids. The acid groups were expected to function as acid catalysts to catalyze the curing process of UF resin. In order to elucidate the structural variation, 3-methoxy-4-hydroxyphenylpropane as a typical guaiacol lignin structural unit was used as a model compound to observe the hydroxymethylation and the reaction with maleic anhydride analyzed by 1H and 13C NMR. After the structural analysis of synthesized lignin-based polyacid by FTIR and 13C NMR, it was used to produce UF resin as an adhesive in plywood and medium density fiberboard (MDF) production, respectively. The results showed that when the addition of lignin-based polyacid was 5% in plywood, it could effectively improve the water resistance of UF resins as compared to commercial additive NH4Cl. It also exhibited a lower formaldehyde emission. Like plywood, lignin-based catalysts used in medium density fiberboard production could not only maintain the mechanical properties, but also inhibit the water adsorption of fiberboards.
科研通智能强力驱动
Strongly Powered by AbleSci AI