亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel type of neural networks for feature engineering of geological data: Case studies of coal and gas hydrate-bearing sediments

Python(编程语言) 人工神经网络 计算机科学 MATLAB语言 软件 特征工程 数据挖掘 特征(语言学) 数据类型 数据处理 人工智能 深度学习 数据库 程序设计语言 语言学 哲学
作者
Lishuai Jiang,Yang Zhao,Naser Golsanami,Lianjun Chen,Weichao Yan
出处
期刊:Geoscience frontiers [Elsevier BV]
卷期号:11 (5): 1511-1531 被引量:44
标识
DOI:10.1016/j.gsf.2020.04.016
摘要

The nature of the measured data varies among different disciplines of geosciences. In rock engineering, features of data play a leading role in determining the feasible methods of its proper manipulation. The present study focuses on resolving one of the major deficiencies of conventional neural networks (NNs) in dealing with rock engineering data. Herein, since the samples are obtained from hundreds of meters below the surface with the utmost difficulty, the number of samples is always limited. Meanwhile, the experimental analysis of these samples may result in many repetitive values and 0s. However, conventional neural networks are incapable of making robust models in the presence of such data. On the other hand, these networks strongly depend on the initial weights and bias values for making reliable predictions. With this in mind, the current research introduces a novel kind of neural network processing framework for the geological that does not suffer from the limitations of the conventional NNs. The introduced single-data-based feature engineering network extracts all the information wrapped in every single data point without being affected by the other points. This method, being completely different from the conventional NNs, re-arranges all the basic elements of the neuron model into a new structure. Therefore, its mathematical calculations were performed from the very beginning. Moreover, the corresponding programming codes were developed in MATLAB and Python since they could not be found in any common programming software at the time being. This new kind of network was first evaluated through computer-based simulations of rock cracks in the 3DEC environment. After the model's reliability was confirmed, it was adopted in two case studies for estimating respectively tensile strength and shear strength of real rock samples. These samples were coal core samples from the Southern Qinshui Basin of China, and gas hydrate-bearing sediment (GHBS) samples from the Nankai Trough of Japan. The coal samples used in the experiments underwent nuclear magnetic resonance (NMR) measurements, and Scanning Electron Microscopy (SEM) imaging to investigate their original micro and macro fractures. Once done with these experiments, measurement of the rock mechanical properties, including tensile strength, was performed using a rock mechanical test system. However, the shear strength of GHBS samples was acquired through triaxial and direct shear tests. According to the obtained result, the new network structure outperformed the conventional neural networks in both cases of simulation-based and case study estimations of the tensile and shear strength. Even though the proposed approach of the current study originally aimed at resolving the issue of having a limited dataset, its unique properties would also be applied to larger datasets from other subsurface measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yasmine完成签到 ,获得积分10
2秒前
26秒前
虚幻的亦旋完成签到,获得积分10
26秒前
加缪应助bobo0212采纳,获得30
27秒前
瑾沫流年发布了新的文献求助10
31秒前
GPTea应助科研通管家采纳,获得60
40秒前
星辰大海应助科研通管家采纳,获得10
40秒前
小二郎应助wangrswjx采纳,获得10
1分钟前
瑾沫流年完成签到,获得积分20
1分钟前
1分钟前
大妙妙完成签到 ,获得积分10
1分钟前
cokevvv发布了新的文献求助10
1分钟前
Yan应助cokevvv采纳,获得10
1分钟前
1分钟前
wangrswjx发布了新的文献求助10
2分钟前
玛琳卡迪马完成签到,获得积分10
2分钟前
seven发布了新的文献求助10
2分钟前
GPTea应助科研通管家采纳,获得20
2分钟前
wangrswjx完成签到,获得积分10
2分钟前
seven发布了新的文献求助10
3分钟前
11完成签到 ,获得积分10
3分钟前
Cookies完成签到,获得积分10
3分钟前
litieniu完成签到 ,获得积分10
3分钟前
精明寒松完成签到 ,获得积分10
3分钟前
Cope完成签到 ,获得积分10
4分钟前
庄海棠完成签到 ,获得积分10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
5分钟前
freq完成签到 ,获得积分10
5分钟前
善学以致用应助小小麦采纳,获得10
5分钟前
sidashu发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
皮皮完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
贺天完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753674
求助须知:如何正确求助?哪些是违规求助? 4097874
关于积分的说明 12678718
捐赠科研通 3811168
什么是DOI,文献DOI怎么找? 2104078
邀请新用户注册赠送积分活动 1129273
关于科研通互助平台的介绍 1006602