材料科学
原子转移自由基聚合
热重分析
接触角
纳米纤维
甲基丙烯酸甲酯
极限抗拉强度
甲基丙烯酸酯
聚合
高分子化学
聚甲基丙烯酸甲酯
自由基聚合
傅里叶变换红外光谱
聚合物
纳米复合材料
化学工程
复合材料
工程类
作者
Cheng-Wei Tu,Fang‐Chang Tsai,Chi‐Jung Chang,Cheng‐Han Yang,Shiao‐Wei Kuo,Jiawei Zhang,Tao Chen,Chih‐Feng Huang
出处
期刊:Polymers
[Multidisciplinary Digital Publishing Institute]
日期:2019-10-09
卷期号:11 (10): 1631-1631
被引量:26
标识
DOI:10.3390/polym11101631
摘要
An effective method of oxidation from paper pulps via 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO) compound to obtain TEMPO-oxidized cellulose nanofibers (TOCNs) was demonstrated. Following by acylation, TOCN having an atom transfer radical polymerization (ATRP) initiating site of bromoisobutyryl moiety (i.e., TOCN-Br) was successfully obtained. Through a facile and practical technique of surface-initiated initiators for continuous activator regeneration atom transfer radical polymerization (SI ICAR ATRP) of methyl methacrylate (MMA) from TOCN-Br, controllable grafting polymer chain lengths (Mn = ca. 10k-30k g/mol) with low polydispersity (PDI < 1.2) can be achieved to afford TOCN-g-Poly(methyl methacrylate) (PMMA) nanomaterials. These modifications were monitored by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and water contact angle analysis. Eventually, TOCN-g-PMMA/PMMA composites were prepared using the solvent blending method. Compared to the pristine PMMA (Tg = 100 °C; tensile strength (σT) = 17.1 MPa), the composites possessed high transparency with enhanced thermal properties and high tensile strength (Tg = 110 °C and σT = 37.2 MPa in 1 wt% TOCN containing case) that were investigated by ultraviolet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and tensile tests. We demonstrated that minor amounts of TOCN-g-PMMA nanofillers can provide high efficacy in improving the mechanical and thermal properties of PMMA matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI