Genetic dissection of wheat nitrogen use efficiency related traits

数量性状位点 农学 加倍单倍体 生物 人口 粮食产量 特质 标记辅助选择 基因座(遗传学) 氮气 遗传学 化学 基因 社会学 人口学 有机化学 程序设计语言 计算机科学
作者
Yun Zhao
链接
摘要

Nitrogen is not only an essential element for wheat development, but also a major determinant for wheat yield and protein quality. It is vital to improve wheat nitrogen use efficiency (NUE) as nitrogen is the most important component of all fertilizers that are provided for the pursuit of a higher wheat yield and better protein quality. Wheat NUE is an important quantitative trait that is very complex and easily influenced by the environment and its controlling network is still not clear. In the current study, a wheat doubled haploid (DH) population was used to study the genetic variations of NUE and its controlling mechanism in wheat. Through quantitative genetic locus (QTL) mapping method, a suite of QTLs associated with NUE related traits as well as yield and yield component traits under different nitrogen rates and different environmental conditions were obtained. For yield components, results showed major QTLs for seed number per main spike (SN) were located on 3A and 5A, the SN QTL on 3A was detected in three environments and explained 32.16% of phenotypic variation. QTLs for thousand kernel weight (TKW) were detected on 2A, 2D, 4A, 4B, 5A, 6A and 7D. The most significant TKW QTL was located at 123 cM on 2A, with LOD and PVE of 16.93 and 20.35%, respectively. Major QTL for grain weight (GW) was located on 5A, with LOD and PVE of 4.42 and 13.26%, respectively. Important QTLs related to grain protein content (GPC) were identified on 1B, 2D, 4B and 5A, GPC QTL on 5A was the most significant, with logarithm of odds (LOD) and phenotypic variation explained (PVE) of 11.36 and 17.04%, respectively. Important NUE related QTLs identified in this study were QTL for Straw protein content (SPC) on 3B, QTL for nitrogen Harvest index (NHI) on 1B, 2B, 5A and 6B. QTL for nitrogen utilization efficiency for grain yield (NUtE) on 1B, 3A and 6B. Besides the large numbers of QTLs identified related to each trait investigated in this study, several chromosome regions were identified to be associated with multiple traits and were detected in multiple environments, including a QTL cluster located at 131 cM at 1B, associated with GPC, SPC and NUtE; QTL cluster located at 111-115 cM on 3A associated with TKW, SN and NUtE; QTL cluster located at 153-155 cM on 4B associated with kernel traits and GPC. Compared with other QTLs that were only detected in single environment, these QTL regions deserve more attention. Metabolites profiling of over 1000 metabolites in mature wheat kernels were carried out to facilitate the candidate gene identification for those regions and other important traits. Because of the causal relationships between metabolites and their closely correlated traits, metabolites identified to be colocalized with these genetic regions will assist further narrowing down these regions harbouring the underlying candidate genes. A single gene controlled major QTL for stem diameter that is positively correlated with grain yield was located on Chromosome 3BL. A list of candidate genes was generated from search of wheat reference map using the flanking markers of this QTL. TaCOMT gene was suggested as one of the candidate genes for stem diameter, further confirmation of the genetic function work is needed. Many modern commercial wheat cultivars contain 1B.1R translocation due to its high yield and disease resistance characteristics despite its negative impact on breadmaking quality caused by the Sec-1 locus on rye 1R chromosome. Wheat gliadins are important parts of wheat storage proteins that determine the extensibility of wheat gluten, which is crucial for breadmaking. In the current study, the gliadin constituent dynamics across the population were studied via reverse phase high-performance liquid chromatography (RP-HPLC) and size exclusion high-performance liquid chromatography (SE-HPLC) to reveal the 1B.1R impacts on seed gliadin compositions. The two parental lines differ in 1B.1R genotype and with High molecular weight glutenin subunits (HMW-GS) composition, ie., 2*, 17+18, 2+12, vs 2*, 7+9, 5+10. Results from SE-HPLC indicated that lines with 1B.1R translocation showed significantly lower SDS-unextractable polymeric protein (UPP) percentage, Ratio of polymeric proteins to monomeric proteins (P/M) and Ratio of glutenin proteins to gliadin proteins (Glu/Gli). However, this undesirable effect was significantly alleviated by HMW-GS 17+18 in one growing environments. The population RP-HPLC profiles could be clearly distinguished into two groups, with lines containing 1B.1R showed more individual proteins originated from the rye translocation. To elucidate the genetic mechanism behind the chromatograph pattern, QTL-mapping analysis was carried out to detect the underlying genetic factors controlling the gliadin components and the results indicated that some gliadin fractions were controlled by gene loci other than the Sec-1 locus. This study provided new insights into maintaining a balanced grain yield and quality through utilising the 1B.1R translocation line in wheat breeding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nater4ver完成签到,获得积分10
1秒前
zdl完成签到,获得积分10
2秒前
淡定从霜完成签到 ,获得积分10
2秒前
脑洞疼应助WYF采纳,获得10
2秒前
潮鸣完成签到 ,获得积分10
3秒前
李丽玲发布了新的文献求助20
3秒前
桐桐应助自觉紫安采纳,获得10
6秒前
房房不慌完成签到,获得积分10
6秒前
7秒前
8秒前
gfbh发布了新的文献求助10
10秒前
七月发布了新的文献求助10
12秒前
nater3ver完成签到,获得积分10
12秒前
WYF发布了新的文献求助10
13秒前
机智的飞鸟完成签到 ,获得积分10
13秒前
李健的小迷弟应助大海采纳,获得10
13秒前
nater2ver完成签到,获得积分10
20秒前
LuciusHe完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
Favorme完成签到,获得积分10
23秒前
华仔应助拉长的断天采纳,获得10
24秒前
25秒前
慕青应助七月采纳,获得10
26秒前
自觉紫安发布了新的文献求助10
26秒前
大海发布了新的文献求助10
27秒前
DouBo完成签到,获得积分10
27秒前
UGO发布了新的文献求助10
28秒前
ally发布了新的文献求助10
30秒前
以恒之心发布了新的文献求助10
34秒前
34秒前
Slyvia2025完成签到,获得积分10
34秒前
Setsail24k完成签到,获得积分10
34秒前
易水完成签到 ,获得积分10
34秒前
gfbh完成签到,获得积分20
37秒前
Orange应助科研通管家采纳,获得10
37秒前
无花果应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757