Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances

计算机科学 人工神经网络 重复性 贝叶斯概率 数据挖掘 选择(遗传算法) 缩小 机器学习 人工智能 统计 数学 程序设计语言
作者
Abbas Khosravi,Saeid Nahavandi,Douglas Creighton,Amir F. Atiya
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:22 (9): 1341-1356 被引量:585
标识
DOI:10.1109/tnn.2011.2162110
摘要

This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助liuxl采纳,获得10
刚刚
chosmos发布了新的文献求助10
刚刚
2秒前
小yi又困啦完成签到 ,获得积分10
2秒前
whoknowsname发布了新的文献求助30
2秒前
爆米花应助多久上课采纳,获得10
3秒前
3秒前
4秒前
小马甲应助勤恳曼卉采纳,获得10
5秒前
李爱国应助简简采纳,获得80
6秒前
seven发布了新的文献求助10
7秒前
myf发布了新的文献求助10
8秒前
9秒前
小远发布了新的文献求助10
9秒前
10秒前
LioXH完成签到,获得积分10
11秒前
12秒前
大个应助我不采纳,获得10
13秒前
14秒前
不系之舟完成签到,获得积分10
14秒前
充电宝应助XuWei采纳,获得10
14秒前
14秒前
文献蚂蚁发布了新的文献求助10
15秒前
15秒前
111发布了新的文献求助30
15秒前
16秒前
一二完成签到 ,获得积分10
16秒前
田様应助harrision采纳,获得10
17秒前
aou发布了新的文献求助10
17秒前
不系之舟发布了新的文献求助10
17秒前
大大怪完成签到,获得积分10
19秒前
banma发布了新的文献求助10
19秒前
西柚发布了新的文献求助10
19秒前
Hello应助从容的方盒采纳,获得10
20秒前
20秒前
浮游应助何hehe采纳,获得10
20秒前
ynulx完成签到,获得积分10
21秒前
79发布了新的文献求助20
21秒前
22秒前
肉苁蓉发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718