Automatic detection of pulmonary embolism in computed tomography pulmonary angiography using Scaled‐YOLOv4

肺栓塞 医学 金标准(测试) 肺动脉造影 工作量 放射科 计算机断层血管造影 人工智能 血管造影 计算机科学 外科 操作系统
作者
Huimin Xu,Huiyao Li,Qifei Xu,Zewei Zhang,Píng Wang,Dong Li,Li Guo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4340-4350 被引量:3
标识
DOI:10.1002/mp.16218
摘要

Abstract Background Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed. Methods In this study, we identified a deep learning model Scaled‐YOLOv4 that enables end‐to‐end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model. Results Scaled‐YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51–3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36–86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48–76.24] and 72.74 [95% CI: 72.10–73.38] on Linyi and FUMPE, respectively. Conclusions This deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助热情无心采纳,获得10
1秒前
1秒前
Jasper应助QIUQIU0916采纳,获得10
1秒前
1秒前
1秒前
淡然安雁完成签到,获得积分10
2秒前
2秒前
科研通AI5应助勤奋天真采纳,获得10
3秒前
Hello应助hzt采纳,获得10
3秒前
傅剑寒发布了新的文献求助10
3秒前
爱笑的小羽毛完成签到,获得积分20
3秒前
3秒前
秀丽的慕灵完成签到,获得积分20
4秒前
cherish发布了新的文献求助10
4秒前
yutian完成签到,获得积分10
4秒前
Advance.Cheng完成签到,获得积分10
4秒前
4秒前
小影发布了新的文献求助10
4秒前
路人完成签到,获得积分0
5秒前
Lemon77777发布了新的文献求助10
5秒前
WQY发布了新的文献求助10
6秒前
tqqwerty发布了新的文献求助10
6秒前
HX发布了新的文献求助10
6秒前
淡然安雁发布了新的文献求助30
6秒前
大模型应助科研边角料采纳,获得10
7秒前
木子完成签到,获得积分20
7秒前
徐梓睿应助阿八八八采纳,获得10
7秒前
7秒前
柒玖发布了新的文献求助10
7秒前
柒玉染发布了新的文献求助10
8秒前
小徐完成签到,获得积分10
8秒前
可积完成签到,获得积分10
8秒前
Wang发布了新的文献求助10
8秒前
科研通AI6应助刘思琪采纳,获得30
8秒前
yun发布了新的文献求助10
9秒前
木子发布了新的文献求助10
9秒前
9秒前
温暖霸发布了新的文献求助20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635