已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ProcessGAN: Supporting the creation of business process improvement ideas through generative machine learning

生成语法 过程(计算) 计算机科学 过程管理 人工智能 工程类 程序设计语言
作者
Christopher van Dun,Linda Moder,Wolfgang Kratsch,Maximilian Röglinger
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:165: 113880-113880 被引量:10
标识
DOI:10.1016/j.dss.2022.113880
摘要

Business processes are a key driver of organizational success, which is why business process improvement (BPI) is a central activity of business process management. Despite an abundance of approaches, BPI as a creative task is time-consuming and labour-intensive. Most importantly, its level of computational support is low. The few computational BPI approaches hardly leverage the opportunities brought about by computational creativity, neglect process data, and rely on rather rigid improvement patterns. Given the increasing amount of process data in the form of event logs and the uptake of generative machine learning for automating creative tasks in various domains, there is huge potential for BPI. Hence, following the design science research paradigm, we specified, implemented, and evaluated ProcessGAN , a novel computational BPI approach based on generative adversarial networks that supports the creation of BPI ideas. Our evaluation shows that ProcessGAN improves the creativity of process designers, particularly the originality of BPI ideas, and shapes up useful in real-world settings. Moreover, ProcessGAN is the first approach to combine BPI and computational creativity. • Supported creation of business process improvement ideas. • Based on generative adversarial networks to leverage computational creativity. • Use of process deviance inherent in event data as inspiration for improvement. • Use of design science research methodology and evaluation frameworks for validation. • Prototype evaluated as useful and applicable in artificial and real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bbsheep发布了新的文献求助10
1秒前
神奇红桃三完成签到,获得积分10
9秒前
村村完成签到,获得积分10
10秒前
和谐曼凝完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助贱小贱采纳,获得10
15秒前
17秒前
19秒前
21秒前
风趣小蜜蜂完成签到 ,获得积分10
22秒前
天元神尊完成签到 ,获得积分10
24秒前
shinkai发布了新的文献求助10
25秒前
25秒前
aqiuwoo完成签到 ,获得积分10
27秒前
28秒前
默默然完成签到 ,获得积分10
29秒前
31秒前
博修发布了新的文献求助10
32秒前
情怀应助天天开心采纳,获得10
33秒前
贱小贱发布了新的文献求助10
34秒前
qyh完成签到,获得积分10
35秒前
xx发布了新的文献求助10
35秒前
crainbowc完成签到,获得积分10
37秒前
科研助手6应助悦耳小玉采纳,获得10
41秒前
42秒前
xx完成签到,获得积分10
43秒前
天天开心发布了新的文献求助10
46秒前
花花猪1989完成签到 ,获得积分10
49秒前
无昵称完成签到 ,获得积分10
49秒前
JamesPei应助yiyii采纳,获得10
50秒前
仁爱芷波完成签到,获得积分20
52秒前
奔跑的神灯完成签到 ,获得积分10
54秒前
56秒前
JamesPei应助怕黑的孤菱采纳,获得10
57秒前
57秒前
阵痛完成签到 ,获得积分10
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
小马甲应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
Akim应助科研通管家采纳,获得10
59秒前
在水一方应助科研通管家采纳,获得10
59秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800806
求助须知:如何正确求助?哪些是违规求助? 3346337
关于积分的说明 10328913
捐赠科研通 3062761
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807402
科研通“疑难数据库(出版商)”最低求助积分说明 763691