Modeling Grinding Processes—Mesh or Mesh-Free Methods, 2D or 3D Approach?

离散化 前角 有限元法 拓本 光滑粒子流体力学 材料科学 过程(计算) 机械 机械工程 计算机科学 结构工程 数学 数学分析 工程类 物理 复合材料 机械加工 操作系统
作者
Praveen Sridhar,Juan Manuel Rodríguez Prieto,Kristin M. de Payrebrune
出处
期刊:Journal of manufacturing and materials processing [MDPI AG]
卷期号:6 (5): 120-120 被引量:3
标识
DOI:10.3390/jmmp6050120
摘要

The objectives of this study are mainly two: (1) to validate whether a single grain scratch process can be modeled in two dimensions under the assumption of plane strain, and (2) to select the best discretization approach to model a single grain scratch process. This paper first focuses on the simulation of the orthogonal cutting process (aluminum alloy A2024 T351) using two mesh-based discretization approaches, the pure Lagrangian method (LAG) and the arbitrary Lagrangian–Eulerian method (ALE), and two particle-based approaches, the particle finite element method (PFEM) and smooth particle hydrodynamics (SPH), for both positive and negative rake angles. Benchmarking of the orthogonal cutting models at a rake angle of γ=20∘ is performed with the results of the process forces (cutting and passive forces) of a turning experiment from the literature. It is shown that all models are able to predict the cutting forces, but not the passive force. The orthogonal cutting model is further extended to simulate the cutting mechanism with negative rake tool geometries typically found in grinding and single grit scratching processes. The effects of the negative rake angles on the discretization approaches are studied. The calculated process forces are also compared to the measurements of the single grit scratch process performed at our laboratory. The 2D orthogonal cutting models significantly overestimate the process forces. One of the reasons why the orthogonal 2D cutting model is inadequate is that it cannot describe the complex mechanisms of material removal such as rubbing, plowing, and cutting. To account for these phenomena in LAG, ALE, and SPH discretization approaches, a 3D scratch model is developed. When comparing the process forces of the 3D model with the experimental measurements, all three discretization approaches show good agreement. However, it can be seen that the ALE model most closely matches the process forces with the experimental results. Finally, the ALE 3D scratch model was subjected to sensitivity analysis by changing the cutting speed, the depth of cut and the tool geometry. The results clearly show that the ALE method not only predicts the process forces and form the trends observed in the scratching experiments, but also predicts the scratch topography satisfactorily. Hence, we conclude that a 3D model is necessary to describe a scratch process and that the ALE method is the best discretization method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助biozy采纳,获得10
刚刚
NexusExplorer应助沧海一声笑采纳,获得10
刚刚
刚刚
2秒前
舍我其谁发布了新的文献求助10
2秒前
3秒前
斯文败类应助跳跃的曼荷采纳,获得10
3秒前
ShuaiZZ发布了新的文献求助10
3秒前
斯文败类应助yan采纳,获得10
3秒前
123发布了新的文献求助20
3秒前
伊莱恩发布了新的文献求助30
4秒前
4秒前
oaa发布了新的文献求助10
5秒前
咚咚关注了科研通微信公众号
5秒前
5秒前
Perrylin718发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
实验室应助星期一采纳,获得30
7秒前
情怀应助伊莱恩采纳,获得10
8秒前
doki发布了新的文献求助10
8秒前
乐观的灵阳关注了科研通微信公众号
9秒前
科目三应助Jun采纳,获得10
9秒前
9秒前
YXYYXYYXY完成签到,获得积分10
9秒前
10秒前
biwenzhu发布了新的文献求助10
11秒前
11秒前
Chenq1nss发布了新的文献求助30
12秒前
斯文败类应助迅速的曼梅采纳,获得10
13秒前
Mila发布了新的文献求助20
13秒前
553599712完成签到,获得积分10
14秒前
漂亮的白晴完成签到,获得积分10
14秒前
流年应助小沈采纳,获得10
15秒前
打打应助lzjsk1采纳,获得10
15秒前
axin关注了科研通微信公众号
15秒前
量子星尘发布了新的文献求助10
16秒前
mmmm发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513467
求助须知:如何正确求助?哪些是违规求助? 4607711
关于积分的说明 14506524
捐赠科研通 4543256
什么是DOI,文献DOI怎么找? 2489480
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447