已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Elder Abuse Using a Random Forest Classifier

随机森林 毒物控制 自杀预防 伤害预防 虐待老人 人为因素与人体工程学 职业安全与健康 分类器(UML) 医疗急救 心理学 医学 计算机科学 人工智能 病理
作者
Qiyan Zeng,Yannan Wang,Fuming Zhao,Zhipeng He
出处
期刊:Journal of Interpersonal Violence [SAGE]
卷期号:: 8862605251355973-8862605251355973 被引量:1
标识
DOI:10.1177/08862605251355973
摘要

This paper aims to identify key factors influencing elder abuse within the family and to further explore the heterogeneity of these factors across different types of elder abuse. The data were drawn from the China Longitudinal Aging Social Survey and the final valid sample was 10,703. A random forest classifier, a supervised machine learning method, was employed to identify the key influencing factors of elder abuse. Children’s economic status is found to be the most important factor in predicting elder abuse, followed by the number of children, the health status of older people, intergenerational relations, children’s time pressure, and the provision of home-based elderly care services. The likelihood of elder abuse decreases continuously with better economic status and less time pressure of children, better health of older people, more children, and better intergenerational relationships, whereas the influences of home-based elderly care services on elder abuse are not monotonous. Number of children contributes most to predict financial abuse, while children’s economic status plays the most significant role in predicting physical and psychological abuse and neglect. This study is the first to apply a supervised machine learning approach with a random forest classifier for the identification of risk factors associated with elder abuse. The findings highlight the advantages of machine learning techniques in improving the prediction accuracy of elder abuse compared to traditional econometric models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彼岸完成签到,获得积分10
刚刚
完美世界应助李振聪采纳,获得10
1秒前
1秒前
1秒前
情怀应助byl采纳,获得10
1秒前
2秒前
2秒前
小球完成签到 ,获得积分10
3秒前
lexi发布了新的文献求助10
4秒前
4秒前
单纯的问安完成签到,获得积分10
4秒前
5秒前
7秒前
even发布了新的文献求助10
8秒前
9秒前
9秒前
xxfsx应助林狗采纳,获得10
9秒前
xxfsx应助林狗采纳,获得10
9秒前
xxfsx应助林狗采纳,获得10
9秒前
xxfsx应助林狗采纳,获得10
9秒前
xxfsx应助林狗采纳,获得10
10秒前
xxfsx应助林狗采纳,获得10
10秒前
xxfsx应助林狗采纳,获得10
10秒前
xxfsx应助林狗采纳,获得10
10秒前
xxfsx应助林狗采纳,获得10
10秒前
xxfsx应助林狗采纳,获得10
10秒前
10秒前
11秒前
12秒前
13秒前
ceeray23发布了新的文献求助20
13秒前
科研通AI2S应助忧郁凌波采纳,获得10
13秒前
lll发布了新的文献求助10
14秒前
16秒前
qh完成签到,获得积分10
17秒前
charint应助阿智采纳,获得10
17秒前
17秒前
coco完成签到,获得积分10
17秒前
byl发布了新的文献求助10
17秒前
健壮念寒发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515229
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513081
捐赠科研通 4545068
什么是DOI,文献DOI怎么找? 2490383
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444058