Developmental Biology-Based 3D Bioprinting: An Off-the-Shelf Strategy to Induce Tissue Regeneration

再生(生物学) 3D生物打印 现成的 发育生物学 组织工程 细胞生物学 生物 生物医学工程 医学 工程类 制造工程
作者
Juhi Chakraborty,Sourabh Ghosh
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
标识
DOI:10.1021/acsbiomaterials.5c00213
摘要

The inability of simplistic tissue engineering approaches to produce cell-based treatments has led to a growing understanding of the necessity to recapitulate the natural mechanisms that govern cell fate and differentiation. Converging developments in developmental biology are poised to transform tissue engineering, a hitherto primarily empirical field, into a rigorous discipline founded on widely recognized engineering principles of quality by design. Lately, the tissue engineering research community has experienced a paradigm shift to reconsider research directions in the field to address challenges in clinical translation. This resulted in the need to rely on the in vivo tissue development processes to utilize cells' innate, evolutionarily programmed ability to self-organize into native tissue-like structures, which may increase the chances of clinical success. The present review emphasizes the potential directions for tissue regeneration that combine off-the-shelf strategies, namely, 3D bioprinting and organoids, following the developmental biology route. The most promising approach in next-generation tissue engineering would be to recapitulate it after gaining a thorough understanding of the embryonic level. Modern developmental re-engineering techniques focus on mimicking the embryonic stages of tissue development rather than concentrating on adult tissue traits. One significant step in this direction is the regulation of many signaling pathways by combining developmental re-engineering with 3D bioprinting. This can aid in bridging the gap between the two disciplines, which may help in the fabrication of mini-models for transplantation or the development of an organ-on-chip platform as a drug screening platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohei完成签到,获得积分10
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助贪玩寻雪采纳,获得10
2秒前
周迅完成签到,获得积分20
2秒前
奚斌发布了新的文献求助10
3秒前
xpxxj完成签到,获得积分10
3秒前
3秒前
4秒前
皇后加哦加哦加哦完成签到,获得积分10
4秒前
kalcspin发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助150
6秒前
小新应助azkl采纳,获得10
7秒前
万能图书馆应助王成豪采纳,获得10
7秒前
dddd完成签到,获得积分10
7秒前
皮凡发布了新的文献求助10
9秒前
奋斗夏烟完成签到,获得积分10
10秒前
susuna完成签到,获得积分10
10秒前
脑洞疼应助shaobingfusiji采纳,获得10
10秒前
st发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
orixero应助kavins凯旋采纳,获得10
12秒前
13秒前
贺六浑发布了新的文献求助40
13秒前
15秒前
彭于晏应助伶俐乌采纳,获得10
15秒前
RNNNLL发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991686
求助须知:如何正确求助?哪些是违规求助? 4240020
关于积分的说明 13209111
捐赠科研通 4034977
什么是DOI,文献DOI怎么找? 2207608
邀请新用户注册赠送积分活动 1218568
关于科研通互助平台的介绍 1137065