Multiscale Data-Driven RANS Closure for Trailing Edge Cutback Film Cooling Flows

作者
Xiao He,Francesco Montomoli,Vittorio Michelassi,Andrea Panizza,Leonardo Pulga
出处
期刊:Journal of turbomachinery [ASME International]
卷期号:148 (5): 1-32
标识
DOI:10.1115/1.4069940
摘要

Abstract This article addresses the steady Reynolds-averaged Navier–Stokes (RANS) simulation of turbomachinery flows with spectral overlap. A multiscale RANS closure model is proposed and applied to trailing edge (TE) cutback film cooling flows, featuring deterministic vortex shedding and its interaction with stochastic turbulence. The model consists of three transport equations that solve the deterministic kinetic energy kd, stochastic kinetic energy ks, and stochastic specific energy dissipation rate ω, hence referred to as the k2–ω model. The key terms are the deterministic anisotropy tensor ad,ij that controls the production of kd, the deterministic length scale Ld that controls the kd-to-ks energy transfer, and the deterministic Prandtl number Prd that controls the deterministic heat flux, all of which are closed by data-driven algebraic models with high-fidelity simulation data. The model is trained on one geometry under two operating conditions, and it is tested in a range of unseen geometries with different TE thicknesses and wall inclination angles under different operating conditions. The k2–ω model predicts the near-wake velocity and temperature field with sufficient accuracy at the cost of 1% of scale-resolving simulations. It is capable of capturing the change of wall cooling effectiveness with respect to the change of geometries and operating conditions, whereas the conventional RANS closure models fail to do so due to the inherent limitation of the Reynolds averaging process in the presence of both deterministic flow structures and turbulence. The presented model is a useful tool for future turbine cutback trailing-edge aerothermal design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
梦溪完成签到 ,获得积分10
1秒前
1秒前
2秒前
传奇3应助paopao采纳,获得10
3秒前
3秒前
4秒前
zuozuo1993完成签到,获得积分10
4秒前
Knight完成签到 ,获得积分10
4秒前
田様应助小美采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
111111发布了新的文献求助10
5秒前
NexusExplorer应助lmz采纳,获得10
5秒前
6秒前
雁塔完成签到 ,获得积分10
6秒前
打打应助YS采纳,获得10
7秒前
shinn发布了新的文献求助10
7秒前
斯文败类应助mihriban采纳,获得10
7秒前
lucky完成签到,获得积分10
7秒前
卡布达发布了新的文献求助10
7秒前
7秒前
研友_n0GBAL发布了新的文献求助10
8秒前
8秒前
Orange应助翠花花采纳,获得10
9秒前
9秒前
9秒前
机灵冬天发布了新的文献求助10
9秒前
9秒前
9秒前
Propitious完成签到 ,获得积分10
9秒前
10秒前
天天快乐应助Matrix采纳,获得10
10秒前
10秒前
10秒前
10秒前
ni完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760339
求助须知:如何正确求助?哪些是违规求助? 5524315
关于积分的说明 15397180
捐赠科研通 4897238
什么是DOI,文献DOI怎么找? 2634090
邀请新用户注册赠送积分活动 1582111
关于科研通互助平台的介绍 1537591