Machine Learning-Empowered Plastic-Derived Porous Carbons for High-Performance CO 2 Capture

多孔性 材料科学 化学工程 复合材料 工程类
作者
Shuangjun Li,Yan Xie,Shuai Deng,Xiangzhou Yuan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:6 (11): 1319-1331
标识
DOI:10.1021/accountsmr.5c00185
摘要

ConspectusPlastic pollution and climate change are interconnected global environmental challenges. Conventional methods (incineration and landfills) exacerbate these issues by emitting greenhouse gases and releasing micro/nanoplastics. To simultaneously address these two critical environmental issues, we upcycle plastic waste into porous carbon materials, enabling high-performance postcombustion CO2 capture in a transformative and practical manner. This strategy tackles environmental pollution, aligns with circular economy principles, and supports several of UN Sustainable Development Goals (SDGs). We conduct systematic studies, including experimental validations, numerical simulations, and machine learning (ML)-empowered optimizations, to provide detailed guidelines for upcycling plastic waste into porous carbons with high-performance CO2 capture.Synthesis routes vary in their environmental benefits and economic feasibility. Different activating agents (e.g., steam, potassium hydroxide, and urea) are comprehensively compared. Experimental operating parameters (e.g., activation temperature, activating agent type, and loading mass ratio) are optimized to produce micropore-dominated carbon materials that exhibit excellent CO2 adsorption performance. Our main results show that plastic-derived porous carbons achieved high specific surface areas (up to 2,060 m2/g) and micropore volumes (∼1.02 cm3/g), demonstrating great potential in CO2 adsorption capture. Functional groups like C═O and O–H further enhance the CO2 adsorption capacity due to their strong dipole–quadrupole interactions with CO2 molecules and the formation of hydrogen bonding. Based on experimental investigations, Grand Canonical Monte Carlo (GCMC) simulations reveal that narrow micropores (<0.8 nm) and optimal isosteric heat (23–28 kJ/mol) favor CO2 physisorption.In this work, interpretable ML techniques, such as feature importance ranking and SHAP analysis, reveal the key structural and chemical features that dominate CO2 uptake performance. These include the pore size distribution and surface chemistry, which provide valuable guidance for the rational design of plastic-derived porous carbons. Building on these insights, we also apply ML, particularly active learning and particle swarm optimization (PSO) approaches, for iteratively identifying optimal synthesis parameters, thereby enhancing CO2 adsorption capacity by up to 2-fold relative to seed experiments. This strategy offers a more efficient route to performance improvement compared to conventional trial-and-error approaches.To ensure industrial applicability, we assess the cyclic performance of CO2 capture by temperature swing adsorption (TSA), pressure swing adsorption (PSA), and vacuum swing adsorption (VSA) processes and then scale these technical routes via process simulations. Multiobjective optimization achieves an excellent 35.13% exergy efficiency, aided by artificial neural network (ANN)-based surrogate modeling and genetic algorithms. This work was also studied from perspectives of both environmental benefits and economic feasibility to explore its potential for enabling sustainable development. This holistic and multidisciplinary strategy, combining materials science, AI algorithms, and environmental engineering, offers a carbon-negative and economically viable path to simultaneously mitigate climate change and achieve a circular plastic economy. Our future work will focus on data set expansions, intelligent optimizations, and large-scale deployment for real-world impacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
zzs发布了新的文献求助10
1秒前
灵巧书本应助飞舞的青鱼采纳,获得10
1秒前
冯文梅发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
可靠小懒虫完成签到,获得积分10
3秒前
orixero应助开心木木采纳,获得10
4秒前
hua完成签到,获得积分20
5秒前
小蘑菇应助aidiresi采纳,获得10
5秒前
白凌风完成签到 ,获得积分10
5秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
王晓婷发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
jash发布了新的文献求助10
9秒前
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
10秒前
健忘雅寒应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得200
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777681
求助须知:如何正确求助?哪些是违规求助? 5634904
关于积分的说明 15446453
捐赠科研通 4909598
什么是DOI,文献DOI怎么找? 2641824
邀请新用户注册赠送积分活动 1589755
关于科研通互助平台的介绍 1544203