Structural semantic‐guided MR synthesis from PET images via a dual cross‐attention mechanism

计算机科学 人工智能 正电子发射断层摄影术 磁共振成像 深度学习 模态(人机交互) 医学影像学 放射科 医学
作者
Hongyan Tang,Wenbo Li,Zhenxing Huang,Yaping Wu,Jianmin Yuan,Yang Yang,Yan Zhang,Yongfeng Yang,Hairong Zheng,Dong Liang,Meiyun Wang,Zhanli Hu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17957
摘要

Abstract Background Multimodal medical imaging methods, such as positron emission tomography/computed tomography (PET/CT), are widely used for diagnosing diseases because they provide both structural and functional information. However, PET/CT has limitations in terms of visualizing soft tissues, particularly for brain diseases, which highlights the need for magnetic resonance imaging (MRI). Purpose Given the limited adoption of PET/ magnetic resonance (MR) devices for making MR images available and the discomfort of elderly cancer patients during long‐term MR scanning, a promising solution is to develop methods for synthesizing MR images from other modalities. While previous research has focused mainly on structure‐to‐structure modality transitions, such as CT‐to‐MR synthesis, our study aims to explore a new function‐to‐structure transition approach to realize PET‐to‐MR synthesis. Specifically, we propose a structural semantic‐guided deep learning network to synthesize MR images from PET data to simplify medical imaging processes, improving both efficiency and accessibility. Methods We propose a structural semantic‐guided deep learning network with a dual cross‐attention (DCA) module to synthesize MR images from PET data for realizing the function‐to‐structure modality transition. The network introduces a structural semantic loss to preserve structural information and details, and the DCA module utilizes cross‐attention to effectively capture the channel and spatial interdependencies among multiscale features. The proposed method was compared with other deep learning‐based methods, including 3DUXNET, UNETR, nnFormer, CycleGAN, Pix2pix, edge‐aware generative adversarial network (Ea‐GAN), and MedNet. Additionally, visual and quantitative analysis was employed to evaluate the model performance. Furthermore, correlation analysis based on pixel averages, semantic assessment, and additional data assessment was performed for the quantitative evaluation of image synthesis results. Additionally, an ablation experiment was conducted to validate the effectiveness of introducing structural semantic loss and the DCA module in enhancing model performance. Results The experiments demonstrate that the proposed method yields superior visual and quantitative outcomes, with a peak signal‐to‐noise ratio (PSNR) of 29.09 dB, a structural similarity index measure (SSIM) of 0.8417, and a mean absolute error (MAE) of 0.0296. Additionally, the correlation analysis based on pixel averages shows a fitted slope of 0.957 in the left caudate region, and the semantic segmentation results reveal a Dice score of 0.8977 in the left thalamus proper. These findings indicate that the synthetic images generated by the proposed method are consistent with the ground truth (GT) and preserve the structural semantic information. Furthermore, an ablation analysis reveals that both the introduction of the structural semantic loss and the incorporation of the DCA module could enhance model performance. Conclusion We propose a synthesis method by introducing structural semantic loss to preserve semantic information and incorporating attention mechanisms into the synthesis network to capture global information. Visual, quantitative, and segmentation semantic results illustrate that the proposed method achieves excellent performance in image synthesis. In future work, we will try to utilize our synthesis method in other modal synthesis tasks and in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Newky完成签到,获得积分10
3秒前
zkai完成签到,获得积分10
3秒前
不想长大完成签到 ,获得积分10
3秒前
刻苦的平松完成签到,获得积分10
4秒前
青青完成签到,获得积分10
4秒前
天马行空完成签到,获得积分10
6秒前
minmin完成签到,获得积分10
7秒前
lbx完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
大气白翠完成签到,获得积分10
10秒前
光亮的自行车完成签到,获得积分0
10秒前
Karvs完成签到,获得积分10
11秒前
12秒前
13秒前
meizi0109完成签到 ,获得积分10
14秒前
火狐狸kc完成签到,获得积分10
15秒前
怡然猎豹完成签到,获得积分10
15秒前
共享精神应助Siso采纳,获得10
15秒前
犹豫战斗机完成签到,获得积分10
16秒前
顺顺安完成签到,获得积分10
16秒前
16秒前
俗签发布了新的文献求助10
18秒前
青石完成签到,获得积分20
18秒前
samtol完成签到,获得积分10
18秒前
杨文志完成签到,获得积分10
18秒前
21秒前
study完成签到,获得积分10
21秒前
皮汤汤完成签到 ,获得积分10
21秒前
andrew完成签到,获得积分10
23秒前
尽平梅愿完成签到,获得积分10
23秒前
俗签完成签到,获得积分10
23秒前
25秒前
别拿暗恋当饭吃完成签到 ,获得积分10
25秒前
冷酷的闹闹完成签到 ,获得积分10
25秒前
Angsent完成签到,获得积分10
28秒前
PSCs完成签到,获得积分10
28秒前
拼搏霸完成签到,获得积分10
29秒前
30秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030390
求助须知:如何正确求助?哪些是违规求助? 3569141
关于积分的说明 11356743
捐赠科研通 3299716
什么是DOI,文献DOI怎么找? 1816873
邀请新用户注册赠送积分活动 890973
科研通“疑难数据库(出版商)”最低求助积分说明 813978